Concept explainers
a)
Interpretation:
- The given substituents has to be predicted.
Concept Introduction:
Electronic effect:
Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond). Electron withdrawal increases acidity. Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.
Rule: The strength of a base depends on the stability of its conjugate acid.
b)
Interpretation:
The given substituents to be predicted
Concept Introduction:
Electronic effect:
Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond). Electron withdrawal increases acidity. Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.
Rule: The strength of a base depends on the stability of its conjugate acid.
c)
Interpretation:
- The following substituents to be predicted.
Concept Introduction:
Electronic effect:
Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond). Electron withdrawal increases acidity. Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.
Rule: The strength of a base depends on the stability of its conjugate acid.
d)
Interpretation:
- The following substituents to be predicted.
Concept Introduction:
Electronic effect:
Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond). Electron withdrawal increases acidity. Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.
Rule: The strength of a base depends on the stability of its conjugate acid.
e)
Interpretation:
- The following substituents to be predicted.
Concept Introduction:
Electronic effect:
Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond). Electron withdrawal increases acidity. Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.
Rule: The strength of a base depends on the stability of its conjugate acid.
f)
Interpretation:
- The following substituents to be predicted.
Concept Introduction:
Electronic effect:
Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond). Electron withdrawal increases acidity. Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.
Rule: The strength of a base depends on the stability of its conjugate acid.
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
Organic Chemistry; Modified MasteringChemistry with Pearson eText -- ValuePack Access Card; Study Guide and Student Solutions Manual for Organic Chemistry, Books a la Carte Edition (7th Edition)
- 2. Propose an efficient synthesis for each of the following transformations. Pay careful attention to both the regio and stereochemical outcomes. ¡ H H racemicarrow_forwardZeroth Order Reaction In a certain experiment the decomposition of hydrogen iodide on finely divided gold is zeroth order with respect to HI. 2HI(g) Au H2(g) + 12(9) Rate = -d[HI]/dt k = 2.00x104 mol L-1 s-1 If the experiment has an initial HI concentration of 0.460 mol/L, what is the concentration of HI after 28.0 minutes? 1 pts Submit Answer Tries 0/5 How long will it take for all of the HI to decompose? 1 pts Submit Answer Tries 0/5 What is the rate of formation of H2 16.0 minutes after the reaction is initiated? 1 pts Submit Answer Tries 0/5arrow_forwardangelarodriguezmunoz149@gmail.com Hi i need help with this question i am not sure what the right answers are.arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning