Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 53Q
To determine
To discuss:
The actions that must be taken by future civilization to preserve themselves from the calamity where Earth can no longer sustain life due to increase in luminoisty of the Sun.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(Astronomy)
Light thermally emitted from the surface of a typical neutron star indicates that it has a temperature of 1,800,000 K. This temperature is about 300 times the temperature of the photosphere of the sun. This means that each square meter of the surface emits _______ more energy per second in thermal radiation than the photosphere of the sun.
Life on Earth is entirely owed to the colossal energy source that we call the Sun. The source of the energy is in the core of Sun where nuclear ___________ yields a great deal of energy by converting _____________ atoms into ______________ atoms. (Fill in the blanks.)
Question 6 options:
fusion; hydrogen; helium
fusion; uranium; barium
fission; helium; hydrogen
fission; proton; neutron
Most stars (Main sequence) generate light
through the same mechanism. Because of this,
there is an empirical relation between their
mass, M, and their Luminosity, L. This relation
could be written in the form
L/Lsun = (M/Msun,
This relation is shown in the log-log diagram
below. Find the value of a and round it to the
nearest integer.
10
104
102
10-2
10-4
0.1
1.0
2.0
0.2
0.5
5.0
10.0
20.0
Mam (solar masses)
Luminosty (solar units)
Chapter 19 Solutions
Universe: Stars And Galaxies
Ch. 19 - Prob. 1QCh. 19 - Prob. 2QCh. 19 - Prob. 3QCh. 19 - Prob. 4QCh. 19 - Prob. 5QCh. 19 - Prob. 6QCh. 19 - Prob. 7QCh. 19 - Prob. 8QCh. 19 - Prob. 9QCh. 19 - Prob. 10Q
Ch. 19 - Prob. 11QCh. 19 - Prob. 12QCh. 19 - Prob. 13QCh. 19 - Prob. 14QCh. 19 - Prob. 15QCh. 19 - Prob. 16QCh. 19 - Prob. 17QCh. 19 - Prob. 18QCh. 19 - Prob. 19QCh. 19 - Prob. 20QCh. 19 - Prob. 21QCh. 19 - Prob. 22QCh. 19 - Prob. 23QCh. 19 - Prob. 24QCh. 19 - Prob. 25QCh. 19 - Prob. 26QCh. 19 - Prob. 27QCh. 19 - Prob. 28QCh. 19 - Prob. 29QCh. 19 - Prob. 30QCh. 19 - Prob. 31QCh. 19 - Prob. 32QCh. 19 - Prob. 33QCh. 19 - Prob. 34QCh. 19 - Prob. 35QCh. 19 - Prob. 36QCh. 19 - Prob. 37QCh. 19 - Prob. 38QCh. 19 - Prob. 39QCh. 19 - Prob. 40QCh. 19 - Prob. 41QCh. 19 - Prob. 42QCh. 19 - Prob. 43QCh. 19 - Prob. 44QCh. 19 - Prob. 45QCh. 19 - Prob. 46QCh. 19 - Prob. 47QCh. 19 - Prob. 48QCh. 19 - Prob. 49QCh. 19 - Prob. 50QCh. 19 - Prob. 51QCh. 19 - Prob. 52QCh. 19 - Prob. 53Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Even though neutral hydrogen is the most abundant element in interstellar matter, it was detected first with a telescope, not a visible light telescope. Explain why.arrow_forwardWhy does helium fusion require a higher temperature than hydrogen fusion?arrow_forwardQUESTION 16 Use the figure shown below to complete the following statement: A low-mass protostar (0.5 to 8M the mass compared to our sun) remains roughly constant in decreases in until it makes a turn towards the main sequence, as it follows its evolutionary track. Protostars of different masses follow diferent paths on their way to the main sequence. 107 Luminosity (L) 10 105 10 107 10² 101 1 10-1 10-2 10-3 Spectral type 0.01 R 0.001 Re 60 M MAIN SEQUENCE 40,000 30,000 20 Mau 10 Mgun 5 Mun 0.1 Run Ren radius; temperature luminosity; radius 3 Min. 05 BO temperature; luminosity Oluminosity: temperature radius: luminosity 1 M 10,000 6000 Surlace temperature (K) 1,000 Rs 2 M STAR L 0.8 M B5 AO FOGO КБ МБ -10 +10 3000 Absolute visual magnitude andarrow_forward
- Nonearrow_forwardThe sun’s energy comes from nuclear reactions that fuse lighter nuclei into heavier ones, releasing energy in the process. The solar fusion process begins when two protons (the nuclei of hydrogen atoms) merge to produce a deuterium nucleus. Deuterium is the “heavy” isotope of hydrogen, with a nucleus consisting of a proton and a neutron. To become deuterium, one of the protons that fused has to turn into a neutron. Our interest for now lies not with the nuclear physics but with the conditions that allow fusion to occur. Before two protons can fuse, they must come into contact. However, the energy required to bring two protons into contact is considerable because the electric potential energy of the two protons increases rapidly as they approach each other. Fusion occurs in the core of the sun because the ultra-high temperature there gives the protons the kinetic energy they need to come together. a. A proton…arrow_forwardIf a star converted every bit of its mass into energy the conversion efficiency would be 100%. However, no star is this efficient in its energy production. Stars with less than 1.3 solar masses (most stars are less than 1.3 solar masses) convert hydrogen into helium with an efficiency of only 0.7%. Bearing in mind that the Sun has a mass of 2 × 1030 kg, how long will it live if it converts all of its hydrogen into helium with an efficiency 0.7%? Please note that it won't actually convert all of its hydrogen into helium so this is a rather optimistic upper limit for the lifetime of the Sun. Also, 1 year = 365.25 days.Lifetime = _________ yearsarrow_forward
- why does nuclear fusion in the sun only occur near the center?arrow_forwardIf the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength (in nm) does it radiate the most energy? Hint: Use Wien's law: ?max = 2.90 ✕ 106 nm · K T How does that compare with 91.2 nm, the wavelength of photons with just enough energy to ionize hydrogen? -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen.arrow_forward(Astronomy) Hyades Cluster Age. This chapter states that the Hyades cluster is 650 million years old. What is the age of the cluster based on highest-mass star in the cluster that is still on the main sequence? (Hint: the figure and the table below may be helpful.)arrow_forward
- A star's Zero Age Main Sequence (ZAMS) radius R, luminosity L, and effective temperature Teff depend primarily on the star's mass. These parameters do evolve somewhat over time, however, while the star still remains on the main sequence. Discuss in what direction each of these parameters evolves, and explain why this occurs. By physical in your explanation. How did this evolution affect our own solar system, if at all?arrow_forwardF2 Planets in the habitable zone of their stars: 1 #3 3 O are so far from their stars that it is very difficult to discover them O are at a temperature where water can exist as a liquid on the planet's surface O are always the planets closest to the star are also called hot Jupiters O cannot exist around stars that are red dwarfs (spectral type M) E G D F3 $ 54 2 4 R F4 LL F DII % 5 Q Search F5 T 9 -0. G < 6 A F6 Y * F7 & 7 H PrtScn U FB 8 Home Jarrow_forwardThrough nuclear fusion reaction, the Sun and stars produce energy. True or false?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Half life | Radioactivity | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=IDkNlU7zKYU;License: Standard YouTube License, CC-BY