Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 40Q
To determine
To discuss:
The way, the color changes of the binary system of Algol, when the larger star eclipses the smaller one and the smaller star eclipses the larger one while observing through a small telescope.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Choose the statements that correctly describe the characteristics of the stars
located in the labeled quadrants of the H-R diagram.
Luminosity
"51 Pegasi" is the name of the first normal star (besides the Sun) around which a planet was discovered. It is in the constellation Pegasus the horse. Its parallax is measured to be 0.064 arcsec.
a. What is its distance from us?
b. The apparent brightness is 1.79 × 10-10 J/(s·m2 ). What is the luminosity? How does that compare with that of the Sun? Look up the temperature: how do
I am uncertain of how to calculate luminosity. My biggest problem is determining by how much.
This question that I attached is asking about the luminosities, could you show me how I would work this out. Also, explain how to determine if star A is more luminous how to find out by how much more luminous than star B it would be.
Chapter 19 Solutions
Universe: Stars And Galaxies
Ch. 19 - Prob. 1QCh. 19 - Prob. 2QCh. 19 - Prob. 3QCh. 19 - Prob. 4QCh. 19 - Prob. 5QCh. 19 - Prob. 6QCh. 19 - Prob. 7QCh. 19 - Prob. 8QCh. 19 - Prob. 9QCh. 19 - Prob. 10Q
Ch. 19 - Prob. 11QCh. 19 - Prob. 12QCh. 19 - Prob. 13QCh. 19 - Prob. 14QCh. 19 - Prob. 15QCh. 19 - Prob. 16QCh. 19 - Prob. 17QCh. 19 - Prob. 18QCh. 19 - Prob. 19QCh. 19 - Prob. 20QCh. 19 - Prob. 21QCh. 19 - Prob. 22QCh. 19 - Prob. 23QCh. 19 - Prob. 24QCh. 19 - Prob. 25QCh. 19 - Prob. 26QCh. 19 - Prob. 27QCh. 19 - Prob. 28QCh. 19 - Prob. 29QCh. 19 - Prob. 30QCh. 19 - Prob. 31QCh. 19 - Prob. 32QCh. 19 - Prob. 33QCh. 19 - Prob. 34QCh. 19 - Prob. 35QCh. 19 - Prob. 36QCh. 19 - Prob. 37QCh. 19 - Prob. 38QCh. 19 - Prob. 39QCh. 19 - Prob. 40QCh. 19 - Prob. 41QCh. 19 - Prob. 42QCh. 19 - Prob. 43QCh. 19 - Prob. 44QCh. 19 - Prob. 45QCh. 19 - Prob. 46QCh. 19 - Prob. 47QCh. 19 - Prob. 48QCh. 19 - Prob. 49QCh. 19 - Prob. 50QCh. 19 - Prob. 51QCh. 19 - Prob. 52QCh. 19 - Prob. 53Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How does one go about these questions?arrow_forwardI need the answer as soon as possiblearrow_forwardWe will take a moment to compare how brightly a white dwarf star shines compared to a red giant star. For the sake of this problem, lets assume a white dwarf has a temperature roughly twice as large as a red giant star. As for their stellar radii, the white dwarf has a radius about 1/10000th that of a red giant star. With this in mind, how does the luminosity of a red giant star compare to that of a white dwarf? (Put differently, find the ratio of their luminosities a.k.a. how many times more luminous is the red giant than the white dwarf? An answer of less than 1 means the white dwarf is more luminous, an answer of 1 means they have the same luminosity, and an answer greater than 1 means the red giant is more luarrow_forward
- Astronomers us the P-Cygni line features in a spectrum of a supernova to... Select one alternative: ...measure the velocity of the supernova ejecta. ...to measure the rotation speed of the star that exploded. ...measure the composition of the supernova ejecta more accurately than with other lines. ...to measure the mass of the neutron star or black hole formed in the supernova.arrow_forwardTwo stars-A and B, of luminosities 0.5 and 4.5 times the observed to have the luminosity of the Sun, respectively-are same apparent brightness. Which star is more distant, and how much farther away is it than the other?arrow_forwardMany of the bright stars in the night sky are highly luminous normal blue stars (such as Acrux), and others are blue giants (such as Rigel) or red giants (such as Betelgeuse). Generally, such stars have a luminosity of 103 to 105 times that of our Sun! Ignoring any effects from our atmosphere, how bright would a star with a luminosity of 8380 solar luminosities be if it were located 620 light years from Earth? (You will need to convert some values.) W/m² For comparison, if you were 1 meter from a regular 100 W light bulb, the brightness would be 7.96 W/ m². (Since stars are not this bright, your answer should be considerably less!) Kind of amazing you can see these things, isn't it?arrow_forward
- (Answer don't copy with hand written please)As a star runs out of hydrogen to fuel nuclear fusion in its core, changes within the star usually cause it to leave the main sequence, expanding and cooling as it does so. Would a star with a radius 12 times that of the Sun, but a surface temperature 0.5 times that of the Sun, be more, or less luminous than the Sun? Show and explain your reasoning. You may assume the surface area of a sphere is A = 4πr2.arrow_forward3. By how many magnitudes is a K5 I star more luminous than a K5 V star? How many times more luminous is this? (Hint: you may wish to review magnitude scale information given in Labs NO3 and N04.) O 1, 2.5 times as luminous O 3, 16 times as luminous O 6. 250 times as luminous O 12. 63.000 times as luminousarrow_forwardOur Sun, a type G star, has a surface temperature of 5800 K. We know, therefore, that it is cooler than a type O star and hotter than a type M star. Given what you learned about the temperature ranges of these types of stars, how many times hotter than our Sun is the hottest type O star? How many times cooler than our Sun is the coolest type M star?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning