Universe: Stars And Galaxies
Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 1Q
To determine

To define:

Horizontal branch.

The location of horizontal branch in an H-R diagram.

The difference between stars on the horizontal branch and red giants or main-sequence stars.

Expert Solution & Answer
Check Mark

Explanation of Solution

Introduction:

An H-R diagram describes the evolutionary stage of a star. Horizontal branch represents the phase that the stars undergo when their luminosity doesn’t change much.

At the red giant phase, the core of the star contracts and its outer layers begin to expand. The outer layers of the star have a lower temperature than the core. However, due to the increase in the temperature inside, the luminosity increases. Star moves to the right in the H-R diagram at this stage. When Helium fusion triggered at the core, it begins to expand again. That process would decrease the temperature of the core a little bit. This also slows down the nuclear fusion a little bit and outer layers would begin to contract again. The contraction allows increasing the temperature and the star moves to the left in the H-R diagram again. Even though the temperature is increasing, since the radius is also decreasing at the same time, the luminosity remains almost the same. Hence, the evolutionary track moves horizontally in the H-R diagram. It is located above the main-sequence phase and between the main-sequence branch and the red giant branch.

However, red giant stars’ luminosity is much higher than the main-sequence stars’ and even horizontal branch stars’. Inside the core of horizontal branch stars Helium fusion can occur and Carbon and Oxygen will be produced. But Helium fusion will never occur in red giants. On the other hand, main sequence stars not even began the Helium fusion process.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Given two particles with Q = 4.40-µC charges as shown in the figure below and a particle with charge q = 1.40 ✕ 10−18 C at the origin. (Note: Assume a reference level of potential V = 0 at r = ∞.) Three positively charged particles lie along the x-axis of the x y coordinate plane.Charge q is at the origin.Charge Q is at (0.800 m, 0).Another charge Q is at (−0.800 m, 0).(a)What is the net force (in N) exerted by the two 4.40-µC charges on the charge q? (Enter the magnitude.) N(b)What is the electric field (in N/C) at the origin due to the two 4.40-µC particles? (Enter the magnitude.) N/C(c)What is the electrical potential (in kV) at the origin due to the two 4.40-µC particles? kV(d)What If? What would be the change in electric potential energy (in J) of the system if the charge q were moved a distance d = 0.400 m closer to either of the 4.40-µC particles?
(a) Where does an object need to be placed relative to a microscope in cm from the objective lens for its 0.500 cm focal length objective to produce a magnification of -25? (Give your answer to at least three decimal places.) 0.42 × cm (b) Where should the 5.00 cm focal length eyepiece be placed in cm behind the objective lens to produce a further fourfold (4.00) magnification? 15 × cm
In a LASIK vision correction, the power of a patient's eye is increased by 3.10 D. Assuming this produces normal close vision, what was the patient's near point in m before the procedure? (The power for normal close vision is 54.0 D, and the lens-to-retina distance is 2.00 cm.) 0.98 x m
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning