
Biochemistry
9th Edition
ISBN: 9781305961135
Author: Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 34RE
Interpretation Introduction
Interpretation:
The two most common inhibitors of the steps of the citric acid cycle and the reaction catalyzed by pyruvate dehydrogenase are to be explained.
Concept introduction:
The citric acid cycle is the most common pathway for aerobic
Pyruvate dehydrogenase is an enzyme that catalyzes the conversion of pyruvate to carbon dioxide and acetyl–CoA.
Adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NADH) are the two most common inhibitors for the above reactions.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Pyruvate is accepted into the TCA cycle by a “feeder” reaction using the pyruvatedehydrogenase complex, resulting in acetyl-CoA and CO2. Provide a full mechanismfor this reaction utilizing the TPP cofactor. Include the roles of all cofactors.
B- Vitamins are converted readily into important metabolic cofactors. Deficiency inany one of them has serious side effects.
a. The disease beriberi results from a vitamin B 1 (Thiamine) deficiency and ischaracterized by cardiac and neurological symptoms. One key diagnostic forthis disease is an increased level of pyruvate and α-ketoglutarate in thebloodstream. How does this vitamin deficiency lead to increased serumlevels of these factors?
b. What would you expect the effect on the TCA intermediates for a patientsuffering from vitamin B 5 deficiency?
c. What would you expect the effect on the TCA intermediates for a patientsuffering from vitamin B 2 /B 3 deficiency?
Draw the Krebs Cycle and show the entry points for the amino acids Alanine,Glutamic Acid, Asparagine, and Valine into the Krebs Cycle - (Draw the Mechanism).
How many rounds of Krebs will be required to waste all Carbons of Glutamic Acidas CO2?
Chapter 19 Solutions
Biochemistry
Ch. 19 - RECALL Which pathways are involved in the...Ch. 19 - RECALL How many ATPs can be produced from one...Ch. 19 - RECALL What are the different names used to...Ch. 19 - Prob. 4RECh. 19 - Prob. 5RECh. 19 - Prob. 6RECh. 19 - Prob. 7RECh. 19 - RECALL What three molecules produced during the...Ch. 19 - RECALL How many enzymes are involved in mammalian...Ch. 19 - RECALL Briefly describe the dual role of lipoic...
Ch. 19 - Prob. 11RECh. 19 - Prob. 12RECh. 19 - Prob. 13RECh. 19 - Prob. 14RECh. 19 - RECALL Why is the reaction catalyzed by citrate...Ch. 19 - RECALL What does it mean when an enzyme has the...Ch. 19 - Prob. 17RECh. 19 - RECALL With respect to stereochemistry, what is...Ch. 19 - Prob. 19RECh. 19 - Prob. 20RECh. 19 - Prob. 21RECh. 19 - RECALL What are the similarities and differences...Ch. 19 - Prob. 23RECh. 19 - Prob. 24RECh. 19 - Prob. 25RECh. 19 - RECALL Why can we say that production of a GTP is...Ch. 19 - Prob. 27RECh. 19 - RECALL ATP is a competitive inhibitor of NADH...Ch. 19 - RECALL Is the conversion of fumarate to malate a...Ch. 19 - REFLECT AND APPLY We have seen one of the four...Ch. 19 - Prob. 31RECh. 19 - Prob. 32RECh. 19 - Prob. 33RECh. 19 - Prob. 34RECh. 19 - REFLECT AND APPLY How does an increase in the...Ch. 19 - REFLECT AND APPLY How does an increase in the...Ch. 19 - Prob. 37RECh. 19 - Prob. 38RECh. 19 - Prob. 39RECh. 19 - Prob. 40RECh. 19 - REFLECT AND APPLY How could the expression milking...Ch. 19 - Prob. 42RECh. 19 - Prob. 43RECh. 19 - Prob. 44RECh. 19 - BIOCHEMICAL CONNECTIONS Why is it possible for...Ch. 19 - RECALL Describe the various purposes of the citric...Ch. 19 - REFLECT AND APPLY The intermediates of glycolysis...Ch. 19 - Prob. 48RECh. 19 - REFLECT AND APPLY Many soft drinks contain citric...Ch. 19 - RECALL NADH is an important coenzyme in catabolic...Ch. 19 - BIOCHEMICAL CONNECTIONS What are the anaplerotic...Ch. 19 - REFLECT AND APPLY Why is acetyl-CoA considered the...Ch. 19 - Prob. 53RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Similar questions
- Sodium fluoroacetate (FCH 2CO2Na) is a very toxic molecule that is used as rodentpoison. It is converted enzymatically to fluoroacetyl-CoA and is utilized by citratesynthase to generate (2R,3S)-fluorocitrate. The release of this product is a potentinhibitor of the next enzyme in the TCA cycle. Show the mechanism for theproduction of fluorocitrate and explain how this molecule acts as a competitiveinhibitor. Predict the effect on the concentrations of TCA intermediates.arrow_forwardIndicate for the reactions below which type of enzyme and cofactor(s) (if any) wouldbe required to catalyze each reaction shown. 1) Fru-6-P + Ery-4-P <--> GAP + Sed-7-P2) Fru-6-P + Pi <--> Fru-1,6-BP + H2O3) GTP + ADP <--> GDP + ATP4) Sed-7-P + GAP <--> Rib-5-P + Xyl-5-P5) Oxaloacetate + GTP ---> PEP + GDP + CO 26) DHAP + Ery-4-P <--> Sed-1,7-BP + H 2O7) Pyruvate + ATP + HCO3- ---> Oxaloacetate + ADP + Piarrow_forwardTPP is also utilized in transketolase reactions in the PPP. Give a mechanism for theTPP-dependent reaction between Xylulose-5-phosphate and Ribose-5-Phosphate toyield Glyceraldehyde-3-phosphate and Sedoheptulose-7-Phosphate.arrow_forward
- What is the difference between a ‘synthetase’ and a ‘synthase’?arrow_forwardIn three separate experiments, pyruvate labeled with 13C at C-1, C-2, or C-3 is introduced to cells undergoing active metabolism. Trace the fate of each carbon through the TCA cycle and show when each of these carbons produces 13CO2.a. Glucose is similarly labeled at C-2 with 13C. During which reaction will this labeled carbon be released as 13CO2?arrow_forwardDraw the Krebs Cycle and show the entry points for the amino acids Alanine,Glutamic Acid, Asparagine, and Valine into the Krebs Cycle. How many rounds of Krebs will be required to waste all Carbons of Glutamic Acidas CO2?arrow_forward
- Suppose the data below are obtained for an enzyme catalyzed reaction with and without the inhibitor I. (s)( mM) 0.2 0.4 0.8 1.0 2.0 4.0 V without i (mM/min) 5.0 7.5 10.0 10.7 12.5 13.6 V with I (mM/min) 3.0 5.0 7.5 8.3 10.7 12.5 Make a Lineweaver Burke plot for this data using graph paper or a spreadsheet Calculate KM and Vmax without inhibitor. What type of inhibition is observed? show graph and work 2. Give the Lineweaver Burk equation and define all the parameters. 3. When substrate concentration is much greater than Km, the rate of catalysis is almost equal to a. kcat b. none of these c. all of these d. Kd e. Vmaxarrow_forwardPlease explain the process of how an axon degenerates in the central nervous system following injury and how it affects the neuron/cell body, as well as presynaptic and postsynaptic neurons. Explain processes such as chromatolysis and how neurotrophin signaling works.arrow_forwardPlease help determine the Relative Response Ratio of my GC-MS laboratory: Laboratory: Alcohol Content in Hand Sanditizers Internal Standard: Butanol Standards of Alcohols: Methanol, Ethanol, Isopropyl, n-Propanol, Butanol Recorded Retention Times: 0.645, 0.692, 0.737, 0.853, 0.977 Formula: [ (Aanalyte / Canalyte) / (AIS / CIS) ]arrow_forward
- Please help determine the Relative Response Ratio of my GC-MS laboratory: Laboratory: Alcohol Content in Hand Sanditizers Internal Standard: Butanol Standards of Alcohols: Methanol, Ethanol, Isopropyl, n-Propanol, Butanol Recorded Retention Times: 0.645, 0.692, 0.737, 0.853, 0.977 Formula: [ (Aanalyte / Canalyte) / (AIS / CIS) ]arrow_forwardplease draw it for me and tell me where i need to modify the structurearrow_forwardPlease help determine the standard curve for my Kinase Activity in Excel Spreadsheet. Link: https://mnscu-my.sharepoint.com/personal/vi2163ss_go_minnstate_edu/_layouts/15/Doc.aspx?sourcedoc=%7B958f5aee-aabd-45d7-9f7e-380002892ee0%7D&action=default&slrid=9b178ea1-b025-8000-6e3f-1cbfb0aaef90&originalPath=aHR0cHM6Ly9tbnNjdS1teS5zaGFyZXBvaW50LmNvbS86eDovZy9wZXJzb25hbC92aTIxNjNzc19nb19taW5uc3RhdGVfZWR1L0VlNWFqNVc5cXRkRm4zNDRBQUtKTHVBQldtcEtWSUdNVmtJMkoxQzl3dmtPVlE_cnRpbWU9eEE2X291ZHIzVWc&CID=e2126631-9922-4cc5-b5d3-54c7007a756f&_SRM=0:G:93 Determine the amount of VRK1 is present 1. Average the data and calculate the mean absorbance for each concentration/dilution (Please over look for Corrections) 2. Blank Correction à Subtract 0 ug/mL blank absorbance from all readings (Please over look for Corrections) 3. Plot the Standard Curve (Please over look for Corrections) 4. Convert VRK1 concentration from ug/mL to g/L 5. Use the molar mass of VRK1 to convert to M and uM…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage Learning

Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Biomolecules - Protein - Amino acids; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=ySNVPDHJ0ek;License: Standard YouTube License, CC-BY