Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 19.68E
Interpretation Introduction
Interpretation:
The average displacement of one atom of
Concept introduction:
The average displacement of the molecule in three dimensions is given by,
Where,
•
•
Displacement is a vector quantity while distance is scalar quantity. Distance can be calculated with the help of average velocity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
There are two particles, one is heavy and the other is light. The light particles diffuse faster than the heavy particles. This relationship is known as Graham’s Law of Effusion. Since both gases are at the same temperature, they must have the same average kinetic energy (½ mv2), where m is mass and v is the velocity (like speed). Since both gases have the same average kinetic energy, you can state that ½ mLvL2 = ½ mHvH2. Multiplying both sides by 2 gives you mLvL2 = mHvH2. Rearranging the equation to get both masses on the same side of the equation will give you mL/mH = VH2/VL2. In 3a and 3b, you probably noticed that the heavy gas particles took twice as long to diffuse as the light gas particles. This means that the light gas particles are moving twice as fast, VH/VL = ½. Therefore, VH2/VL2 = ¼. How many times heavier is the heavy gas compared to the light gas? If the light gas was Ne, what would be a reasonable identity for the heavy gas?
Q6. (a)The vander waals equation is used to describe the behaviour
of real gases but still not so useful in many industrial
applications. Explain why?(3)
(b)In kinetic molecular theory of gases it is assumed that
The molecules of the gases occupy negligible volume as compared
to the total volume of the gas' which factor can be actually
described by this postulate?(2)
why does small particles have higher Brownian diffusion rates than larger particles.
Chapter 19 Solutions
Physical Chemistry
Ch. 19 - Prob. 19.1ECh. 19 - What is the kinetic energy of a single atom of...Ch. 19 - Prob. 19.3ECh. 19 - One mole of Ne atoms confined to a volume of 10.0L...Ch. 19 - Prob. 19.5ECh. 19 - Prob. 19.6ECh. 19 - Prob. 19.7ECh. 19 - Prob. 19.8ECh. 19 - Prob. 19.9ECh. 19 - Prob. 19.10E
Ch. 19 - Prob. 19.11ECh. 19 - Interstellar space can be considered as having...Ch. 19 - Prob. 19.13ECh. 19 - SF6 is a gas at room temperature, 295K. What is...Ch. 19 - Prob. 19.15ECh. 19 - Prob. 19.16ECh. 19 - If relativistic effects were ignored, what...Ch. 19 - Prob. 19.18ECh. 19 - Prob. 19.19ECh. 19 - Prob. 19.20ECh. 19 - Prob. 19.21ECh. 19 - Prob. 19.22ECh. 19 - Prob. 19.23ECh. 19 - Prob. 19.24ECh. 19 - What is the ratio of vrms/vmostprob for any gas at...Ch. 19 - Prob. 19.26ECh. 19 - Prob. 19.27ECh. 19 - Prob. 19.28ECh. 19 - Prob. 19.29ECh. 19 - Prob. 19.30ECh. 19 - Prob. 19.31ECh. 19 - The previous exercise gives an expression for...Ch. 19 - Prob. 19.33ECh. 19 - Prob. 19.34ECh. 19 - Prob. 19.35ECh. 19 - What must the pressure be if the mean free path of...Ch. 19 - Prob. 19.37ECh. 19 - Prob. 19.38ECh. 19 - Prob. 19.39ECh. 19 - Explain why the molecular diameter for argon, at...Ch. 19 - Prob. 19.41ECh. 19 - Prob. 19.42ECh. 19 - Prob. 19.43ECh. 19 - A 1.00-mol sample of Xe gas is kept at a...Ch. 19 - Prob. 19.45ECh. 19 - Prob. 19.46ECh. 19 - Prob. 19.47ECh. 19 - Prob. 19.48ECh. 19 - Prob. 19.49ECh. 19 - Consider a gas mixture containing equal...Ch. 19 - The inverse of the collision rate, 1/z, is the...Ch. 19 - Prob. 19.52ECh. 19 - Prob. 19.53ECh. 19 - Prob. 19.54ECh. 19 - Prob. 19.55ECh. 19 - Estimate the rate at which Hg effuses out a hole...Ch. 19 - Prob. 19.57ECh. 19 - Knudsen effusion cells are used to determine vapor...Ch. 19 - Prob. 19.59ECh. 19 - Prob. 19.60ECh. 19 - Prob. 19.61ECh. 19 - Prob. 19.62ECh. 19 - Prob. 19.63ECh. 19 - Prob. 19.64ECh. 19 - Prob. 19.65ECh. 19 - Prob. 19.66ECh. 19 - Prob. 19.67ECh. 19 - Prob. 19.68ECh. 19 - Prob. 19.69ECh. 19 - Prob. 19.70ECh. 19 - Prob. 19.71ECh. 19 - Prob. 19.72ECh. 19 - Prob. 19.73E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- During the discussion of gaseous diffusion for enriching uranium, it was claimed that 235UF6 diffuses 0.4% faster than 238UF6. Show the calculation that supports this value. The molar mass of 235UF6 = 235.043930 + 6 ×18.998403 = 349.034348 g/mol, and the molar mass of 238UF6 = 238.050788 + 6 × 18.998403 = 352.041206 g/mol.arrow_forward1.3 mole of helium gas at a temperature of 276 K is confined to a cubical container whose sides are 12 cm long.Find the mean summed kinetic energy of ALL the atoms in the container in [J].arrow_forwardDuring the discussion of gaseous diffusion for enriching uranium, it was claimed that 235UF6 diffuses 0.4% faster than 238UF6. Show the calculation that supports this value. The molar mass of 235UF6 = 235.043930 + 6 x 18.998403 = 349.034348 g/mol, and the molar mass of 238UF6 = 238.050788 + 6 x 18.998403 = 352.041206 g/mol.arrow_forward
- The diameter of a Ne atom is 140 pm. What is the mean free path in nm of 0.5 mol Ne confined in 5 L at 300 K and 9.87 x 104 Pa?arrow_forwardTorricelli, who invented the barometer, used mercury in its construction because mercury has a very high density, which makes it possible to make a more compact barometer than one based on a less dense fluid. Calculate the density of mercury using the observation that the column of mercury is 760 mm high when the atmospheric pressure is 1.01 × 105 Pa. Assume the tube containing the mercury is a cylinder with a constant cross-sectional area.arrow_forward70.0 cm³ of a mixture of methane and ethane were mixed with 250 cm³ of oxygen at room temperature and pressure and the mixture was exploded. On cooling back to the initial room conditions, the volume of the gases was 160 cm³, which was reduced to 50.0 cm³ on passing through aqueous sodium hydroxide. Calculate the volume of methane and ethane in the mixture.arrow_forward
- Calculate the most probable speed of oxygen (O2) molecules in a gas at T = 334 K, O2 atomic mass is 32 amu, where the atomic mass unit (amu) is 1.66 x 10-27 kg. Provide your answer in units of meters per second, but do not include the units in your answer, just the number in normal form to 3 significant digitsarrow_forwardwhere m stands for the mass of the particle, v stands for the particle speed, T stands for the Temperature of the system, and k stands for the Boltzmann constant. What would be the relative average kinetic energies for the helium, neon, and argon at 100K? (think about what this would mean for each variable) Explain how you assigned the relative positions of each gas.arrow_forwardYou are working in an oil refinery. Where you use hydrocarbon gases like methane (CH4), ethane (C2H), and propane (C3H8) and prepared a mixture, When measured the pressure at 25°C it turns out to be 7.50 atm. This gas mixture was then also used in a mass spectrophotometer and the following data was obtained. Based on this information find the partial pressure of each gas and report respectively as their name appeared in the question 10 30 40 50 Molecular maaNs (amu) اخترأحد الخبارات a. 2.3 atm, 3.8 atm, 1.4 atmO b. 4.0 atm, 1.5 atm, 2.5 atm O 2.1 atm, 4.0 atm, 1.4 atm O d. 3.8 atm, 1.4 atm, 23 atm e. 1.4 atm, 2.3 atm, 3.8 atmO Intensity of peaksarrow_forward
- 18) What will the temperature of a 2100. mL sample of nitrogen at 526. mm Hg and 42.4oC be, in oC, after it changes to 1290. mm Hg and 3100. mL? Put your answer with 3 significant digits.arrow_forwardWhat pressure, in atmospheres, is exerted on the body of a diver if she is 39 ft below the surface of the water when atmospheric pressure at the surface is 720 mmHg ? Assume that the density of the water is 1.00g/cm3=1.00×103kg/m3. The gravitational constant is 9.81m/s2, and 1Pa=1kg/m−s2.arrow_forwardDescribe in your own words the Kinetic Molecular Theory of gases. The Kinetic Molecular Theory of gases tells us that the energy content of any gas is related only to its temperature. It also tells us that it is possible to compute the "RMS" (root mean squared) velocity of any gas molecule if you know its formula weight and its temperature. Using this information describe how you might compute the RMS velocity of sulfur dioxide (SO2) in the atmosphere of the planet Venus (T = 820 F), the RMS velocity of oxygen (O2) in the atmosphere of Earth (T = 50 F), or the RMS velocity of carbon dioxide (CO2) in the atmosphere of Mars (T = - 80 F).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co