Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 19.58E
Knudsen effusion cells are used to determine vapor pressures of high-temperature materials. For example, a Knudsen cell is filled with tungsten and heated to
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The vapor pressure of water at 25 C is 23.76 Torr. Estimate the vapor pressure of water at the same temperature in the presence of 2.5 atm of an inert ideal gas that is insoluble in water (e.g., helium). The molar mass of water is 18.02 g/mol, and the density is 0.998 g/cm3.
The vapor pressure of propanone is 15.40 kPa at 10C and 81.65 at 50C. Calculate the temperature at which propanone will boil at a pressure of 101.3.
The enthalpy of vaporization of Substance X is 16.0kJmol and its normal boiling point is 123.°C. Calculate the vapor pressure of X at −35.°C.
Chapter 19 Solutions
Physical Chemistry
Ch. 19 - Prob. 19.1ECh. 19 - What is the kinetic energy of a single atom of...Ch. 19 - Prob. 19.3ECh. 19 - One mole of Ne atoms confined to a volume of 10.0L...Ch. 19 - Prob. 19.5ECh. 19 - Prob. 19.6ECh. 19 - Prob. 19.7ECh. 19 - Prob. 19.8ECh. 19 - Prob. 19.9ECh. 19 - Prob. 19.10E
Ch. 19 - Prob. 19.11ECh. 19 - Interstellar space can be considered as having...Ch. 19 - Prob. 19.13ECh. 19 - SF6 is a gas at room temperature, 295K. What is...Ch. 19 - Prob. 19.15ECh. 19 - Prob. 19.16ECh. 19 - If relativistic effects were ignored, what...Ch. 19 - Prob. 19.18ECh. 19 - Prob. 19.19ECh. 19 - Prob. 19.20ECh. 19 - Prob. 19.21ECh. 19 - Prob. 19.22ECh. 19 - Prob. 19.23ECh. 19 - Prob. 19.24ECh. 19 - What is the ratio of vrms/vmostprob for any gas at...Ch. 19 - Prob. 19.26ECh. 19 - Prob. 19.27ECh. 19 - Prob. 19.28ECh. 19 - Prob. 19.29ECh. 19 - Prob. 19.30ECh. 19 - Prob. 19.31ECh. 19 - The previous exercise gives an expression for...Ch. 19 - Prob. 19.33ECh. 19 - Prob. 19.34ECh. 19 - Prob. 19.35ECh. 19 - What must the pressure be if the mean free path of...Ch. 19 - Prob. 19.37ECh. 19 - Prob. 19.38ECh. 19 - Prob. 19.39ECh. 19 - Explain why the molecular diameter for argon, at...Ch. 19 - Prob. 19.41ECh. 19 - Prob. 19.42ECh. 19 - Prob. 19.43ECh. 19 - A 1.00-mol sample of Xe gas is kept at a...Ch. 19 - Prob. 19.45ECh. 19 - Prob. 19.46ECh. 19 - Prob. 19.47ECh. 19 - Prob. 19.48ECh. 19 - Prob. 19.49ECh. 19 - Consider a gas mixture containing equal...Ch. 19 - The inverse of the collision rate, 1/z, is the...Ch. 19 - Prob. 19.52ECh. 19 - Prob. 19.53ECh. 19 - Prob. 19.54ECh. 19 - Prob. 19.55ECh. 19 - Estimate the rate at which Hg effuses out a hole...Ch. 19 - Prob. 19.57ECh. 19 - Knudsen effusion cells are used to determine vapor...Ch. 19 - Prob. 19.59ECh. 19 - Prob. 19.60ECh. 19 - Prob. 19.61ECh. 19 - Prob. 19.62ECh. 19 - Prob. 19.63ECh. 19 - Prob. 19.64ECh. 19 - Prob. 19.65ECh. 19 - Prob. 19.66ECh. 19 - Prob. 19.67ECh. 19 - Prob. 19.68ECh. 19 - Prob. 19.69ECh. 19 - Prob. 19.70ECh. 19 - Prob. 19.71ECh. 19 - Prob. 19.72ECh. 19 - Prob. 19.73E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Which has the greatest vapour pressure at 25°C? SiO2 CO2 H2Oarrow_forwardThe vapor pressure of water at 30 °C is 4.24 kPa. Calculate the vapor pressure if 95.0 g of xylose, C₅H₁₀O₅(l), is added to 100.0 mL of water. The density of water at 30 °C is 0.996 g・mL⁻¹.arrow_forwardThe vapor pressure of water at 30 °C is 4.24 kPa. Calculate the vapor pressure if 95.0 g of glycerol, C₃H₈O₃(l), is added to 100.0 mL of water. The density of water at 30 °C is 0.996 g・mL⁻¹.arrow_forward
- The standard enthalpy of vaporization (H°vap) of ethylenediamine ((NH2CH2)2) is 44.0 kJ/mol.The normal boiling point of ethylenediamine is 116.5°C.Calculate the vapour pressure of ethylenediamine at 102.0°C.arrow_forwardCalculate the change in the chemical potential of liquid water and water vapor when the pressure is increased from 1.0 atm to 10 atm at 100°C. Discuss the effect of the pressure increase on the equilibrium between the liquid water and the water vapor. Assume that water vapor behaves perfectly and the density of water is 1 g/cm3.arrow_forwardPrior to the discovery that freon-12 (CF2Cl2) is harmful to the Earth’s ozone layer it was frequently used as the dispersing agent in spray cans for hair spray etc. Estimate the pressure that a can of hair spray using freon-12 has to withstand at 40 °C, the temperature of a can that has been standing in sunlight. The enthalpy of vaporization of freon-12 at its normal boiling point of −29.2 °C is 20.25 kJ mol−1; assume that this value remains constant over the temperature range of interest.arrow_forward
- At which temperature is the vapor pressure of ethanol equal to 80. kPa?arrow_forward(b) Using the Crystallographer's formula to determine the density (in g/cm³) of Po: ρ = Σ Ζ * Μ Vell* N You must know that a primitive cubic cell has Z = 1 Since Po is a metal, the value of "i" = 1, since it's the only entity! MM of Po= 208.998 g/mol Vcell (in cm³) = a³ Vcell (3.36 x 10-8 cm)³ = 3.793 x 10-23 cm³ N = 6.022 x 1023 atoms/mol Thus: p = (1 atom/cell) (208.998 g/mol) = 9.16 g/cm³ (3.793 x 10-23 cm³) (6.022 x 1023)arrow_forwardWrite the difference between ferromagnetism and anti-ferromagnetism.arrow_forward
- The vapor pressure of ammonia at –50°C is 0.4034 atm; at 0°C, it is 4.2380 atm. (a) Calculate the molar enthalpy of vaporization (AHvap) of ammonia. (b) Calculate the normal boiling temperature of NH3(€).arrow_forwardThe vapor pressures of tetrachloromethane (A) and trichloroethylene (B) between 76.8 °C and 87.2 °C are given by the empirical formulas 2790.78 In(P/torr)=15.8401– T+226.4 and 2345.4 In(P / torr)=15.0124 – T+192.7 where T is the Celsius temperature. Compute the values of XA and ya at 82.0 °C. Assume an ideal solution with a total vapor pressure of 1 atm.arrow_forwardFor liquid zinc, the measured vapour pressures at 627 °C and 977 °C are given as 9.5 x 10-3 atm and 0.116 atm,respectively. Using the derived equation to calculate the boiling temperature (TB,Zn) and enthalpy of boiling for zinc (∆HB,Zn).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY