An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18.7, Problem 18.2CE
To determine
The age of the universe if the constant rate of expansion is
50 km/s/Mpc
.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
T/ F
The distance unit best for interstellar distances is the light-year. ___
The distance unit best for intergalactic distances is the mega-parsec. ___
Compare the values of the number of grains of sand in all earth’s beaches with the number of stars in the universe – which is greater?
Number of sand grains
Number of stars
They are about the same.
Calculate the lifetime of a 15 MSun star.
Answer: ___ years
Chapter 18 Solutions
An Introduction to Physical Science
Ch. 18.1 - How is the position of a star designated in the...Ch. 18.1 - Prob. 2PQCh. 18.1 - Prob. 18.1CECh. 18.2 - Prob. 1PQCh. 18.2 - Prob. 2PQCh. 18.3 - Prob. 1PQCh. 18.3 - Prob. 2PQCh. 18.4 - Prob. 1PQCh. 18.4 - Prob. 2PQCh. 18.5 - Prob. 1PQ
Ch. 18.5 - Prob. 2PQCh. 18.6 - Prob. 1PQCh. 18.6 - Prob. 2PQCh. 18.7 - Prob. 1PQCh. 18.7 - Prob. 2PQCh. 18.7 - Prob. 18.2CECh. 18 - Prob. AMCh. 18 - Prob. BMCh. 18 - Prob. CMCh. 18 - Prob. DMCh. 18 - Prob. EMCh. 18 - Prob. FMCh. 18 - Prob. GMCh. 18 - Prob. HMCh. 18 - Prob. IMCh. 18 - Prob. JMCh. 18 - Prob. KMCh. 18 - Prob. LMCh. 18 - Prob. MMCh. 18 - Prob. NMCh. 18 - Prob. OMCh. 18 - Prob. PMCh. 18 - Prob. QMCh. 18 - Prob. RMCh. 18 - Prob. SMCh. 18 - Prob. TMCh. 18 - Prob. UMCh. 18 - Prob. VMCh. 18 - Prob. WMCh. 18 - Prob. XMCh. 18 - Prob. YMCh. 18 - Prob. ZMCh. 18 - Prob. AAMCh. 18 - What is the point on the celestial sphere...Ch. 18 - Prob. 2MCCh. 18 - Prob. 3MCCh. 18 - Prob. 4MCCh. 18 - Prob. 5MCCh. 18 - Prob. 6MCCh. 18 - Prob. 7MCCh. 18 - What force keeps the all stars from flying apart?...Ch. 18 - Prob. 9MCCh. 18 - Prob. 10MCCh. 18 - Prob. 11MCCh. 18 - Prob. 12MCCh. 18 - Prob. 13MCCh. 18 - Prob. 14MCCh. 18 - Prob. 15MCCh. 18 - Prob. 16MCCh. 18 - Prob. 17MCCh. 18 - Prob. 18MCCh. 18 - Prob. 19MCCh. 18 - Prob. 20MCCh. 18 - The apparent change of the position of a star due...Ch. 18 - Prob. 2FIBCh. 18 - Prob. 3FIBCh. 18 - Prob. 4FIBCh. 18 - Prob. 5FIBCh. 18 - Prob. 6FIBCh. 18 - Prob. 7FIBCh. 18 - Prob. 8FIBCh. 18 - Prob. 9FIBCh. 18 - Prob. 10FIBCh. 18 - Prob. 11FIBCh. 18 - Prob. 12FIBCh. 18 - Prob. 13FIBCh. 18 - Prob. 14FIBCh. 18 - Prob. 15FIBCh. 18 - Prob. 16FIBCh. 18 - Prob. 17FIBCh. 18 - Prob. 18FIBCh. 18 - Prob. 19FIBCh. 18 - Prob. 20FIBCh. 18 - Prob. 1SACh. 18 - Prob. 2SACh. 18 - Prob. 3SACh. 18 - What is the vernal equinox, and what does it have...Ch. 18 - Prob. 5SACh. 18 - Prob. 6SACh. 18 - Prob. 7SACh. 18 - Prob. 8SACh. 18 - Prob. 9SACh. 18 - Prob. 10SACh. 18 - Prob. 11SACh. 18 - Prob. 12SACh. 18 - Prob. 13SACh. 18 - Prob. 14SACh. 18 - Prob. 15SACh. 18 - Prob. 16SACh. 18 - Prob. 17SACh. 18 - Prob. 18SACh. 18 - Prob. 19SACh. 18 - Prob. 20SACh. 18 - Prob. 21SACh. 18 - Prob. 22SACh. 18 - Prob. 23SACh. 18 - Prob. 24SACh. 18 - Prob. 25SACh. 18 - Prob. 26SACh. 18 - Prob. 27SACh. 18 - Prob. 28SACh. 18 - Prob. 29SACh. 18 - Prob. 30SACh. 18 - Prob. 31SACh. 18 - Prob. 32SACh. 18 - Prob. 33SACh. 18 - Prob. 34SACh. 18 - Prob. 35SACh. 18 - Prob. 36SACh. 18 - Prob. 37SACh. 18 - Prob. 38SACh. 18 - Prob. 39SACh. 18 - State three experimental findings that support the...Ch. 18 - Prob. 41SACh. 18 - Prob. 42SACh. 18 - Prob. 1VCCh. 18 - Prob. 1AYKCh. 18 - Prob. 2AYKCh. 18 - Prob. 3AYKCh. 18 - If you went outside on a clear night to locate...Ch. 18 - Prob. 5AYKCh. 18 - Prob. 6AYKCh. 18 - What major factor determines the future of the...Ch. 18 - Find the distance in parsecs to the star Altair,...Ch. 18 - The bright star Sirius has a parallax angle of...Ch. 18 - Calculate the number of seconds in a year (365...Ch. 18 - Prob. 4ECh. 18 - Prob. 5ECh. 18 - Prob. 6ECh. 18 - Prob. 7ECh. 18 - Prob. 8ECh. 18 - Prob. 9ECh. 18 - Prob. 10ECh. 18 - Prob. 11ECh. 18 - If Hubbles constant had a value of 75 km/s/Mpc,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many kilometers make one light year? a) 9.4607 × 1012 km b) 9.4607 × 109 km c) 9.4607 × 1011 km d) 9.4607 × 1010 kmarrow_forwardgiven: a (distance to center of galaxy in AU) = 1,717,914,439 AU P (suns orbital period in years) = 203,782,828.3 years M (mass of milky way galaxy in solar masses) = 1.22 x 10^11 Msun Question: Assume the Milky Way Galaxy is made up entirely of stars like the Sun, i.e. on average each star has the mass of 1 MSun. Under this assumption, approximately how many stars are there in our galaxy? Express this answer in billions of stars (1 billion = 109).arrow_forwardThe time of the Cambrian explosion is listed on the second page of the Universe Bowl on the inside cover of the printed book. Express that time in scientific notation.arrow_forward
- What is the difference between the Solar System, the Galaxy, and the Universe?arrow_forwardA typical galaxy is shown on the first page of the Universe Bowl on the inside cover of the printed book. Express the number of stars in this typical galaxy in scientific notation.arrow_forwardMost of the dark matter in a galaxy is located in a galaxy's (hint: one word) which allows the luminous matter, particularly near the outer edges of the galaxy, to rotate around the center of the galaxy at a faster speed than predicted by Kepler's 3rd Law.arrow_forward
- If the Hubble constant equals 70 km/s/Mpc, the age of the universe roughly equals a. 6 billion years. b. 10 billion years. c. 12 billion years. d. 14 billion years. e. 20 billion years.arrow_forwardWhite Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a 4 sphere is Tr.) 3 km Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size? I Table A-10 I Properties of the Planets ORBITAL PROPERTIES Semimajor Axis (a) Orbital Period (P) Average Orbital Velocity (km/s) Orbital Inclination Planet (AU) (106 km) (v) (days) Eccentricity to Ecliptic Mercury 0.387 57.9 0.241 88.0 47.9 0.206 7.0° Venus 0.723 108 0.615 224.7 35.0 0.007 3.4° Earth 1.00 150 1.00 365.3 29.8 0.017 Mars 1.52 228 1.88 687.0 24.1 0.093 1.8° Jupiter 5.20 779 11.9 4332 13.1 0.049 1.30 Saturn 9.58 1433 29.5 10,759 9.7 0.056 2.5° 30,799 60,190 Uranus 19.23 2877 84.3 6.8 0.044 0.8° Neptune * By definition. 30.10 4503 164.8 5.4 0.011 1.8° PHYSICAL PROPERTIES (Earth = e)…arrow_forwardHow many light years are in one parsec? (Use at least two significant figures)arrow_forward
- Calculate the length of one light-year (ca), in metres.arrow_forwardCalculate the age of the universe when its temperature was 10¹¹ K.arrow_forwardCalculate the number of miles in a light-year, using 1.86 105 mi/s as the speed of light. (Hint: The number of seconds in a year, 365 days, will be useful.) Incorrect: Your answer is incorrect. mi/yarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY