An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 9MC
To determine
The property that classifies the star based on its temperature.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Question 32
Consider three Main Sequence stars, an O tar, an F star and a K star, each with an
apparent magnitude of 2. Which star is the most luminous?
They're all the same luminosity.
The O star
The F star
The K star
Question 33
Consider three Main Sequence stars, an O star, an F star and a K star, each with an
apparent magnitude of 2. Which star appears the brightest in the night sky?
The O star
The F star
O The K star
O They all appear the same.
Please answer
both
Which star in the table below has the least surface temperature?
Star Name
d (parsecs)
Parallax (seconds of arc)
Spectral Type
$$ \delta $$ Cen
0.026
B2 IV
HR 4607
0.039
G8 III
HR 4758
20
G0 V
HR 39801
0.005
M2 I
9 CMa
2.5
A1 V
a.
$$ \delta $$ Cen
b.
HR 4607
c.
HR 4758
d.
HD 39801
e.
9 CMa
A star has a parallax angle of 0.0270 arcseconds and an apparent magnitude of 4.641. The distance to this star is 37.03 parsecs and the absolute magintude is 1.79.
18: What is the luminosity of this star? (HINT: The luminosity of the Sun is 3.85×1026 W.) Using the Forumla M1 - M2 = -2.5 log(L1/L2)
the absolute magnitude of the Sun is 4.8
Chapter 18 Solutions
An Introduction to Physical Science
Ch. 18.1 - How is the position of a star designated in the...Ch. 18.1 - Prob. 2PQCh. 18.1 - Prob. 18.1CECh. 18.2 - Prob. 1PQCh. 18.2 - Prob. 2PQCh. 18.3 - Prob. 1PQCh. 18.3 - Prob. 2PQCh. 18.4 - Prob. 1PQCh. 18.4 - Prob. 2PQCh. 18.5 - Prob. 1PQ
Ch. 18.5 - Prob. 2PQCh. 18.6 - Prob. 1PQCh. 18.6 - Prob. 2PQCh. 18.7 - Prob. 1PQCh. 18.7 - Prob. 2PQCh. 18.7 - Prob. 18.2CECh. 18 - Prob. AMCh. 18 - Prob. BMCh. 18 - Prob. CMCh. 18 - Prob. DMCh. 18 - Prob. EMCh. 18 - Prob. FMCh. 18 - Prob. GMCh. 18 - Prob. HMCh. 18 - Prob. IMCh. 18 - Prob. JMCh. 18 - Prob. KMCh. 18 - Prob. LMCh. 18 - Prob. MMCh. 18 - Prob. NMCh. 18 - Prob. OMCh. 18 - Prob. PMCh. 18 - Prob. QMCh. 18 - Prob. RMCh. 18 - Prob. SMCh. 18 - Prob. TMCh. 18 - Prob. UMCh. 18 - Prob. VMCh. 18 - Prob. WMCh. 18 - Prob. XMCh. 18 - Prob. YMCh. 18 - Prob. ZMCh. 18 - Prob. AAMCh. 18 - What is the point on the celestial sphere...Ch. 18 - Prob. 2MCCh. 18 - Prob. 3MCCh. 18 - Prob. 4MCCh. 18 - Prob. 5MCCh. 18 - Prob. 6MCCh. 18 - Prob. 7MCCh. 18 - What force keeps the all stars from flying apart?...Ch. 18 - Prob. 9MCCh. 18 - Prob. 10MCCh. 18 - Prob. 11MCCh. 18 - Prob. 12MCCh. 18 - Prob. 13MCCh. 18 - Prob. 14MCCh. 18 - Prob. 15MCCh. 18 - Prob. 16MCCh. 18 - Prob. 17MCCh. 18 - Prob. 18MCCh. 18 - Prob. 19MCCh. 18 - Prob. 20MCCh. 18 - The apparent change of the position of a star due...Ch. 18 - Prob. 2FIBCh. 18 - Prob. 3FIBCh. 18 - Prob. 4FIBCh. 18 - Prob. 5FIBCh. 18 - Prob. 6FIBCh. 18 - Prob. 7FIBCh. 18 - Prob. 8FIBCh. 18 - Prob. 9FIBCh. 18 - Prob. 10FIBCh. 18 - Prob. 11FIBCh. 18 - Prob. 12FIBCh. 18 - Prob. 13FIBCh. 18 - Prob. 14FIBCh. 18 - Prob. 15FIBCh. 18 - Prob. 16FIBCh. 18 - Prob. 17FIBCh. 18 - Prob. 18FIBCh. 18 - Prob. 19FIBCh. 18 - Prob. 20FIBCh. 18 - Prob. 1SACh. 18 - Prob. 2SACh. 18 - Prob. 3SACh. 18 - What is the vernal equinox, and what does it have...Ch. 18 - Prob. 5SACh. 18 - Prob. 6SACh. 18 - Prob. 7SACh. 18 - Prob. 8SACh. 18 - Prob. 9SACh. 18 - Prob. 10SACh. 18 - Prob. 11SACh. 18 - Prob. 12SACh. 18 - Prob. 13SACh. 18 - Prob. 14SACh. 18 - Prob. 15SACh. 18 - Prob. 16SACh. 18 - Prob. 17SACh. 18 - Prob. 18SACh. 18 - Prob. 19SACh. 18 - Prob. 20SACh. 18 - Prob. 21SACh. 18 - Prob. 22SACh. 18 - Prob. 23SACh. 18 - Prob. 24SACh. 18 - Prob. 25SACh. 18 - Prob. 26SACh. 18 - Prob. 27SACh. 18 - Prob. 28SACh. 18 - Prob. 29SACh. 18 - Prob. 30SACh. 18 - Prob. 31SACh. 18 - Prob. 32SACh. 18 - Prob. 33SACh. 18 - Prob. 34SACh. 18 - Prob. 35SACh. 18 - Prob. 36SACh. 18 - Prob. 37SACh. 18 - Prob. 38SACh. 18 - Prob. 39SACh. 18 - State three experimental findings that support the...Ch. 18 - Prob. 41SACh. 18 - Prob. 42SACh. 18 - Prob. 1VCCh. 18 - Prob. 1AYKCh. 18 - Prob. 2AYKCh. 18 - Prob. 3AYKCh. 18 - If you went outside on a clear night to locate...Ch. 18 - Prob. 5AYKCh. 18 - Prob. 6AYKCh. 18 - What major factor determines the future of the...Ch. 18 - Find the distance in parsecs to the star Altair,...Ch. 18 - The bright star Sirius has a parallax angle of...Ch. 18 - Calculate the number of seconds in a year (365...Ch. 18 - Prob. 4ECh. 18 - Prob. 5ECh. 18 - Prob. 6ECh. 18 - Prob. 7ECh. 18 - Prob. 8ECh. 18 - Prob. 9ECh. 18 - Prob. 10ECh. 18 - Prob. 11ECh. 18 - If Hubbles constant had a value of 75 km/s/Mpc,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the defining difference between a brown dwarf and a true star?arrow_forwardWhat are the approximate spectral classes of stars with the following characteristics? A. Balmer lines of hydrogen are very strong; some lines of ionized metals are present. B. The strongest lines are those of ionized helium. C. Lines of ionized calcium are the strongest in the spectrum; hydrogen lines show only moderate strength; lines of neutral and metals are present. D. The strongest lines are those of neutral metals and bands of titanium oxide.arrow_forwardArrange the following stars in order of their evolution: A. A star with no nuclear reactions going on in the core, which is made primarily of carbon and oxygen. B. A star of uniform composition from center to surface; it contains hydrogen but has no nuclear reactions going on in the core. C. A star that is fusing hydrogen to form helium in its core. D. A star that is fusing helium to carbon in the core and hydrogen to helium in a shell around the core. E. A star that has no nuclear reactions going on in the core but is fusing hydrogen to form helium in a shell around the core.arrow_forward
- 15: A star has a parallax angle of 0.0270 arcseconds and an apparent magnitude of 4.641. What is the distance to this star? Answer: 37 16: What is the absolute magnitude of this star? Answer:1.8 17: Is this star more or less luminous than the Sun? Answer "M" for More luminous or "L" for Less luminous. (HINT: the absolute magnitude of the Sun is 4.8) Answer: M 18: What is the luminosity of this star? (HINT: The luminosity of the Sun is 3.85×1026 W.) Please answer question #18, #15-17 are correct, the photos provide the work for them.arrow_forwardYou measure a star to have a parallax angle of 0.12 arc-seconds What is the distance to this star in parsecs? 8.33 Hint: d = 1/p What is the parallax angle of a different star that is twice as far away as the star from the previous problems? [answer in arc-seconds without including the unit]arrow_forwardAn O8 V star has an apparent visual magnitude of +5. Use the method of spectroscopic parallax to estimate the distance to the star (in pc). (Hints: Refer to one of the H–R diagrams in the chapter, and use the magnitude–distance formula, d = 10(mV − MV + 5)/5 where d is the distance in parsecs, mV and MV are the apparent and absolute visual magnitude respectively.)arrow_forward
- Which star in the table below has the greatest diameter? Star Name d (parsecs) Parallax (seconds of arc) Spectral Type 65 Tau 0.025 A7 IV HR 4621 B2 IV $$ \alpha $$ Pic 20 A7 V 58 Ori 0.005 M2 I HR 2491 2.5 A1 V a. 65 Tau b. HR 4621 c. $$ \alpha $$ Pic d. 58 Ori e. HR 2491arrow_forwardWhich star in the table below is the closest to Earth? Star Name d (parsecs) Parallax (seconds of arc) Spectral Type $$ \delta $$ Cen 0.026 B2 IV HR 4607 0.039 G8 III HR 4758 20 G0 V HR 39801 0.005 M2 I 9 CMa 2.5 A1 V a. $$ \delta $$ Cen b. HR 4607 c. HR 4758 d. HD 39801 e. 9 CMaarrow_forward12: A star with spectral type A0 has a surface temperature of 9600 K and a radius of 2.2 RSun. How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one) Answer: 36.854 13:This star has a mass of 3.3 MSun. what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr. Please answer question 13 thank you.arrow_forward
- 2. If Vega is apparent magnitude zero, and Deneb first magnitude, then Vega must be 2.5× hotter than Deneb. Vega is 2.5× brighter than Deneb. Vega is about 100× brighter than Deneb. Deneb is one magnitude brighter than Vega. Deneb must be a main sequence star, and Vega a giant.arrow_forwardA star has a parallax angle of 0.0270 arcseconds and an apparent magnitude of 4.641. The distance to this star is 37.03 parsecs and the absolute magintude is 1.79. 18: What is the luminosity of this star? (HINT: The luminosity of the Sun is 3.85×1026 W.)arrow_forward11arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax