An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 6E
To determine
The distance in light-yearsof the famous Pleiades star cluster, when distance in parsec is
130 pc
.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Algol binary system consists of a 3.7 Msun star and a 0.8 Msun star with an orbital period of 2.87 days. Using Newton’s version of Kepler’s Third Law, calculate the distance, a, between the two stars. Compare that to the size of Betelgeuse (you’ll need to look that up).
Newton’s Version of Kepler’s Law: (M1 + M2) P2 = (4p2 /G) a3
Rearrange the equation to solve for a. Pi, p, is equal to 3.14. IMPORTANT NOTE: Google the value of G (the Universal Gravitational Constant) or look it up in your text. NOTICE THE UNITS. You must convert every distance and time in your equation to the same units, otherwise, you’ll get an incorrect answer. That means you must convert distances to meters, solar masses to kilograms, and time to seconds. When you compare your value to the size of Betelgeuse, it will also help that they are in the same units.
2.
If Vega is apparent magnitude zero, and Deneb first magnitude, then
Vega must be 2.5× hotter than Deneb.
Vega is 2.5× brighter than Deneb.
Vega is about 100× brighter than Deneb.
Deneb is one magnitude brighter than Vega.
Deneb must be a main sequence star, and Vega a giant.
The giant star Betelgeuse has an angular diameter as observed from Earth of about 0.05 arc seconds. If the star is 600 light years away from us, what is the physical diameter of the star in km? Compare this to the sun’s diameter of 1.4x10^6 km. The sun is about 1.6 x 10^(-5) light years from Earth.
Chapter 18 Solutions
An Introduction to Physical Science
Ch. 18.1 - How is the position of a star designated in the...Ch. 18.1 - Prob. 2PQCh. 18.1 - Prob. 18.1CECh. 18.2 - Prob. 1PQCh. 18.2 - Prob. 2PQCh. 18.3 - Prob. 1PQCh. 18.3 - Prob. 2PQCh. 18.4 - Prob. 1PQCh. 18.4 - Prob. 2PQCh. 18.5 - Prob. 1PQ
Ch. 18.5 - Prob. 2PQCh. 18.6 - Prob. 1PQCh. 18.6 - Prob. 2PQCh. 18.7 - Prob. 1PQCh. 18.7 - Prob. 2PQCh. 18.7 - Prob. 18.2CECh. 18 - Prob. AMCh. 18 - Prob. BMCh. 18 - Prob. CMCh. 18 - Prob. DMCh. 18 - Prob. EMCh. 18 - Prob. FMCh. 18 - Prob. GMCh. 18 - Prob. HMCh. 18 - Prob. IMCh. 18 - Prob. JMCh. 18 - Prob. KMCh. 18 - Prob. LMCh. 18 - Prob. MMCh. 18 - Prob. NMCh. 18 - Prob. OMCh. 18 - Prob. PMCh. 18 - Prob. QMCh. 18 - Prob. RMCh. 18 - Prob. SMCh. 18 - Prob. TMCh. 18 - Prob. UMCh. 18 - Prob. VMCh. 18 - Prob. WMCh. 18 - Prob. XMCh. 18 - Prob. YMCh. 18 - Prob. ZMCh. 18 - Prob. AAMCh. 18 - What is the point on the celestial sphere...Ch. 18 - Prob. 2MCCh. 18 - Prob. 3MCCh. 18 - Prob. 4MCCh. 18 - Prob. 5MCCh. 18 - Prob. 6MCCh. 18 - Prob. 7MCCh. 18 - What force keeps the all stars from flying apart?...Ch. 18 - Prob. 9MCCh. 18 - Prob. 10MCCh. 18 - Prob. 11MCCh. 18 - Prob. 12MCCh. 18 - Prob. 13MCCh. 18 - Prob. 14MCCh. 18 - Prob. 15MCCh. 18 - Prob. 16MCCh. 18 - Prob. 17MCCh. 18 - Prob. 18MCCh. 18 - Prob. 19MCCh. 18 - Prob. 20MCCh. 18 - The apparent change of the position of a star due...Ch. 18 - Prob. 2FIBCh. 18 - Prob. 3FIBCh. 18 - Prob. 4FIBCh. 18 - Prob. 5FIBCh. 18 - Prob. 6FIBCh. 18 - Prob. 7FIBCh. 18 - Prob. 8FIBCh. 18 - Prob. 9FIBCh. 18 - Prob. 10FIBCh. 18 - Prob. 11FIBCh. 18 - Prob. 12FIBCh. 18 - Prob. 13FIBCh. 18 - Prob. 14FIBCh. 18 - Prob. 15FIBCh. 18 - Prob. 16FIBCh. 18 - Prob. 17FIBCh. 18 - Prob. 18FIBCh. 18 - Prob. 19FIBCh. 18 - Prob. 20FIBCh. 18 - Prob. 1SACh. 18 - Prob. 2SACh. 18 - Prob. 3SACh. 18 - What is the vernal equinox, and what does it have...Ch. 18 - Prob. 5SACh. 18 - Prob. 6SACh. 18 - Prob. 7SACh. 18 - Prob. 8SACh. 18 - Prob. 9SACh. 18 - Prob. 10SACh. 18 - Prob. 11SACh. 18 - Prob. 12SACh. 18 - Prob. 13SACh. 18 - Prob. 14SACh. 18 - Prob. 15SACh. 18 - Prob. 16SACh. 18 - Prob. 17SACh. 18 - Prob. 18SACh. 18 - Prob. 19SACh. 18 - Prob. 20SACh. 18 - Prob. 21SACh. 18 - Prob. 22SACh. 18 - Prob. 23SACh. 18 - Prob. 24SACh. 18 - Prob. 25SACh. 18 - Prob. 26SACh. 18 - Prob. 27SACh. 18 - Prob. 28SACh. 18 - Prob. 29SACh. 18 - Prob. 30SACh. 18 - Prob. 31SACh. 18 - Prob. 32SACh. 18 - Prob. 33SACh. 18 - Prob. 34SACh. 18 - Prob. 35SACh. 18 - Prob. 36SACh. 18 - Prob. 37SACh. 18 - Prob. 38SACh. 18 - Prob. 39SACh. 18 - State three experimental findings that support the...Ch. 18 - Prob. 41SACh. 18 - Prob. 42SACh. 18 - Prob. 1VCCh. 18 - Prob. 1AYKCh. 18 - Prob. 2AYKCh. 18 - Prob. 3AYKCh. 18 - If you went outside on a clear night to locate...Ch. 18 - Prob. 5AYKCh. 18 - Prob. 6AYKCh. 18 - What major factor determines the future of the...Ch. 18 - Find the distance in parsecs to the star Altair,...Ch. 18 - The bright star Sirius has a parallax angle of...Ch. 18 - Calculate the number of seconds in a year (365...Ch. 18 - Prob. 4ECh. 18 - Prob. 5ECh. 18 - Prob. 6ECh. 18 - Prob. 7ECh. 18 - Prob. 8ECh. 18 - Prob. 9ECh. 18 - Prob. 10ECh. 18 - Prob. 11ECh. 18 - If Hubbles constant had a value of 75 km/s/Mpc,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What are the approximate spectral classes of stars with the following characteristics? A. Balmer lines of hydrogen are very strong; some lines of ionized metals are present. B. The strongest lines are those of ionized helium. C. Lines of ionized calcium are the strongest in the spectrum; hydrogen lines show only moderate strength; lines of neutral and metals are present. D. The strongest lines are those of neutral metals and bands of titanium oxide.arrow_forwardAs seen from Earth, the Sun has an apparent magnitude of about 26.7 . What is the apparent magnitude of the Sun as seen from Saturn, about 10 AU away? (Remember that one AU is the distance from Earth to the Sun and that the brightness decreases as the inverse square of the distance.) Would the Sun still be the brightest star in the sky?arrow_forwardThe nearest star to our solar system is 4.29 light years away. How much is thisdistance in terms of parsecs? How much parallax would this star (named Alpha Centauri) show when viewed from two locations of the Earth six months apart in its orbit around the Sun ?arrow_forward
- Favorite Star Polaris is 132 pc from Earth and has an apparent magnitude of 2.5. What is its absolute visual magnitude?arrow_forwardLet us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)arrow_forwardWhich star in the table below has the least surface temperature? Star Name d (parsecs) Parallax (seconds of arc) Spectral Type $$ \delta $$ Cen 0.026 B2 IV HR 4607 0.039 G8 III HR 4758 20 G0 V HR 39801 0.005 M2 I 9 CMa 2.5 A1 V a. $$ \delta $$ Cen b. HR 4607 c. HR 4758 d. HD 39801 e. 9 CMaarrow_forward
- Suppose a star has a luminosity of 7.0x1026 watts and an apparent brightness of 4.0x10-12 watt/m?. How far away is it? Give your answer in both kilometers and light-years.arrow_forwardLet us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer) Question 4 of 7 A Moving to another question will save this response. 1 6:59 & backsarrow_forwardWhich star in the table below is the closest to Earth? Star Name d (parsecs) Parallax (seconds of arc) Spectral Type $$ \delta $$ Cen 0.026 B2 IV HR 4607 0.039 G8 III HR 4758 20 G0 V HR 39801 0.005 M2 I 9 CMa 2.5 A1 V a. $$ \delta $$ Cen b. HR 4607 c. HR 4758 d. HD 39801 e. 9 CMaarrow_forward
- The star Firefly is located 3.0 pc away. If it had an absolute magnitude of 13.0, which value below is reasonable for its apparent magnitude? O A. 10.4 ОВ. 13.3 ОС. -26.7 O D. 15.0arrow_forwardWhich star in the table below has the greatest diameter? Star Name d (parsecs) Parallax (seconds of arc) Spectral Type 65 Tau 0.025 A7 IV HR 4621 B2 IV $$ \alpha $$ Pic 20 A7 V 58 Ori 0.005 M2 I HR 2491 2.5 A1 V a. 65 Tau b. HR 4621 c. $$ \alpha $$ Pic d. 58 Ori e. HR 2491arrow_forwardThe star Firefly is located 3.0 pc away. If it had an absolute magnitude of 13.0, which value below is reasonable for its apparent magnitude? A. 10.4 В. 13.3 ОС. -26.7 OD. 15.0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax