An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 18SA
To determine
The name of one star from each of the four groups of stars.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
You measure a star to have a parallax angle of 0.12 arc-seconds
What is the distance to this star in parsecs?
8.33
Hint: d = 1/p
What is the parallax angle of a different star that is twice as far away as the star from the previous problems? [answer in arc-seconds without including the unit]
15: A star has a parallax angle of 0.0270 arcseconds and an apparent magnitude of 4.641. What is the distance to this star? Answer: 37
16: What is the absolute magnitude of this star? Answer:1.8
17: Is this star more or less luminous than the Sun? Answer "M" for More luminous or "L" for Less luminous. (HINT: the absolute magnitude of the Sun is 4.8) Answer: M
18: What is the luminosity of this star? (HINT: The luminosity of the Sun is 3.85×1026 W.)
Please answer question #18, #15-17 are correct, the photos provide the work for them.
Which star in the table of stellar data has the largest parallax?
Star distance (pc) parallax angle (")| m
M
A
100
2
В
0.1
4
C
25
0.040
6
D
0.025
А. А
О В. В
O C.C
O D.D
Chapter 18 Solutions
An Introduction to Physical Science
Ch. 18.1 - How is the position of a star designated in the...Ch. 18.1 - Prob. 2PQCh. 18.1 - Prob. 18.1CECh. 18.2 - Prob. 1PQCh. 18.2 - Prob. 2PQCh. 18.3 - Prob. 1PQCh. 18.3 - Prob. 2PQCh. 18.4 - Prob. 1PQCh. 18.4 - Prob. 2PQCh. 18.5 - Prob. 1PQ
Ch. 18.5 - Prob. 2PQCh. 18.6 - Prob. 1PQCh. 18.6 - Prob. 2PQCh. 18.7 - Prob. 1PQCh. 18.7 - Prob. 2PQCh. 18.7 - Prob. 18.2CECh. 18 - Prob. AMCh. 18 - Prob. BMCh. 18 - Prob. CMCh. 18 - Prob. DMCh. 18 - Prob. EMCh. 18 - Prob. FMCh. 18 - Prob. GMCh. 18 - Prob. HMCh. 18 - Prob. IMCh. 18 - Prob. JMCh. 18 - Prob. KMCh. 18 - Prob. LMCh. 18 - Prob. MMCh. 18 - Prob. NMCh. 18 - Prob. OMCh. 18 - Prob. PMCh. 18 - Prob. QMCh. 18 - Prob. RMCh. 18 - Prob. SMCh. 18 - Prob. TMCh. 18 - Prob. UMCh. 18 - Prob. VMCh. 18 - Prob. WMCh. 18 - Prob. XMCh. 18 - Prob. YMCh. 18 - Prob. ZMCh. 18 - Prob. AAMCh. 18 - What is the point on the celestial sphere...Ch. 18 - Prob. 2MCCh. 18 - Prob. 3MCCh. 18 - Prob. 4MCCh. 18 - Prob. 5MCCh. 18 - Prob. 6MCCh. 18 - Prob. 7MCCh. 18 - What force keeps the all stars from flying apart?...Ch. 18 - Prob. 9MCCh. 18 - Prob. 10MCCh. 18 - Prob. 11MCCh. 18 - Prob. 12MCCh. 18 - Prob. 13MCCh. 18 - Prob. 14MCCh. 18 - Prob. 15MCCh. 18 - Prob. 16MCCh. 18 - Prob. 17MCCh. 18 - Prob. 18MCCh. 18 - Prob. 19MCCh. 18 - Prob. 20MCCh. 18 - The apparent change of the position of a star due...Ch. 18 - Prob. 2FIBCh. 18 - Prob. 3FIBCh. 18 - Prob. 4FIBCh. 18 - Prob. 5FIBCh. 18 - Prob. 6FIBCh. 18 - Prob. 7FIBCh. 18 - Prob. 8FIBCh. 18 - Prob. 9FIBCh. 18 - Prob. 10FIBCh. 18 - Prob. 11FIBCh. 18 - Prob. 12FIBCh. 18 - Prob. 13FIBCh. 18 - Prob. 14FIBCh. 18 - Prob. 15FIBCh. 18 - Prob. 16FIBCh. 18 - Prob. 17FIBCh. 18 - Prob. 18FIBCh. 18 - Prob. 19FIBCh. 18 - Prob. 20FIBCh. 18 - Prob. 1SACh. 18 - Prob. 2SACh. 18 - Prob. 3SACh. 18 - What is the vernal equinox, and what does it have...Ch. 18 - Prob. 5SACh. 18 - Prob. 6SACh. 18 - Prob. 7SACh. 18 - Prob. 8SACh. 18 - Prob. 9SACh. 18 - Prob. 10SACh. 18 - Prob. 11SACh. 18 - Prob. 12SACh. 18 - Prob. 13SACh. 18 - Prob. 14SACh. 18 - Prob. 15SACh. 18 - Prob. 16SACh. 18 - Prob. 17SACh. 18 - Prob. 18SACh. 18 - Prob. 19SACh. 18 - Prob. 20SACh. 18 - Prob. 21SACh. 18 - Prob. 22SACh. 18 - Prob. 23SACh. 18 - Prob. 24SACh. 18 - Prob. 25SACh. 18 - Prob. 26SACh. 18 - Prob. 27SACh. 18 - Prob. 28SACh. 18 - Prob. 29SACh. 18 - Prob. 30SACh. 18 - Prob. 31SACh. 18 - Prob. 32SACh. 18 - Prob. 33SACh. 18 - Prob. 34SACh. 18 - Prob. 35SACh. 18 - Prob. 36SACh. 18 - Prob. 37SACh. 18 - Prob. 38SACh. 18 - Prob. 39SACh. 18 - State three experimental findings that support the...Ch. 18 - Prob. 41SACh. 18 - Prob. 42SACh. 18 - Prob. 1VCCh. 18 - Prob. 1AYKCh. 18 - Prob. 2AYKCh. 18 - Prob. 3AYKCh. 18 - If you went outside on a clear night to locate...Ch. 18 - Prob. 5AYKCh. 18 - Prob. 6AYKCh. 18 - What major factor determines the future of the...Ch. 18 - Find the distance in parsecs to the star Altair,...Ch. 18 - The bright star Sirius has a parallax angle of...Ch. 18 - Calculate the number of seconds in a year (365...Ch. 18 - Prob. 4ECh. 18 - Prob. 5ECh. 18 - Prob. 6ECh. 18 - Prob. 7ECh. 18 - Prob. 8ECh. 18 - Prob. 9ECh. 18 - Prob. 10ECh. 18 - Prob. 11ECh. 18 - If Hubbles constant had a value of 75 km/s/Mpc,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Describe two ways of determining the diameter of a star.arrow_forwardConsider two identical stars, A and B. Star B is 10 times farther away than star A. What is the difference in magnitudes between the two stars?arrow_forwardA first-magnitude star is 100 times brighter than a sixth-magnitude star, which means each difference in magnitude represents a brightness change of 2.51 times. Compare the brightness of a star with an apparent magnitude (m) of −2.1 to a star with an apparent magnitude of +2.9.A first-magnitude star is 100 times brighter than a sixth-magnitude star, which means each difference in magnitude represents a brightness change of 2.51 times. Bchange ≈arrow_forward
- Which of the following WOULD NOT characterizes the type(s) of star we would find at g, m, n, o, and p on the Hertzsprung-Russel Diagram (Figure 4) a. are all smaller than q,i,h. b. fuse hydrogen into helium. c. are called, “the main sequence”. d. fuse He into heavier elements. e. get smaller towards the right sidearrow_forwardIf the Sun is located at point F1, what is located at F2? a 12 b C F1 F2 Earth A star Nothing Sun Semi-major axisarrow_forwardUse a diagram to explain what is meant by the parallax angle, p, for a star observed twice from Earth, with a 6-month interval between each observation. Hence define the parsec, and calculate its value in astronomical units and metres. The star Betelgeuse is observed to have a parallax angle p = 4.5 × 10−3 arcseconds. State the distance of Betelgeuse in units of parsecs and light years.arrow_forward
- Question 32 Consider three Main Sequence stars, an O tar, an F star and a K star, each with an apparent magnitude of 2. Which star is the most luminous? They're all the same luminosity. The O star The F star The K star Question 33 Consider three Main Sequence stars, an O star, an F star and a K star, each with an apparent magnitude of 2. Which star appears the brightest in the night sky? The O star The F star O The K star O They all appear the same. Please answer botharrow_forwardWhat are the approximate spectral classes of stars with the following characteristics? A. Balmer lines of hydrogen are very strong; some lines of ionized metals are present. B. The strongest lines are those of ionized helium. C. Lines of ionized calcium are the strongest in the spectrum; hydrogen lines show only moderate strength; lines of neutral and metals are present. D. The strongest lines are those of neutral metals and bands of titanium oxide.arrow_forwardVerify that if two stars have a difference of five magnitudes, this corresponds to a factor of 100 in the ratio (b2b1) ; that 2.5 magnitudes corresponds to a factor of 10; and that 0.75 magnitudes corresponds to a factor of 2.arrow_forward
- Arrange the following stars in order of their evolution: A. A star with no nuclear reactions going on in the core, which is made primarily of carbon and oxygen. B. A star of uniform composition from center to surface; it contains hydrogen but has no nuclear reactions going on in the core. C. A star that is fusing hydrogen to form helium in its core. D. A star that is fusing helium to carbon in the core and hydrogen to helium in a shell around the core. E. A star that has no nuclear reactions going on in the core but is fusing hydrogen to form helium in a shell around the core.arrow_forwardAn eclipsing binary star system is observed with the following contact times for the main eclipse: each star in the system. The orbital velocity of the smaller star relative to the larger is 62,000 km/h. Determine the diameters for each star in the system.arrow_forwardTable 17.2 lists the temperature ranges that correspond to the different spectral types. What part of the star do these temperatures refer to? Why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax