An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 7MC
To determine
The part of the sun’s structure that we see in visible light.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Sun's photosphere is
a. the central region where the Sun originates
b. the part of the Sun which the light comes that we see when we look at the Sun with our eyes
c. the hottest region of the Sun
d. the outermost layers of the Sun's atmosphere
e. the first region you would come to when leaving the core
In a typical solar oscillation, the Sun’s surface moves up or down with a speed of 0.1m/s . If you were to try to measure this speed using the Doppler shift of the absorption line for Iron which has a wavelength of 557.6099nm, what is the longest wavelength you will see?
13 What is the solar wind?
(A) The uppermost layer of the Sun, lying just above the corona
B
A stream of charged particles flowing outward from the surface of the Sun
с
D
The wind that causes huge arcs of gas to rise above the Sun's surface
The strong wind that blows sunspots around on the surface of the Sun
Chapter 18 Solutions
An Introduction to Physical Science
Ch. 18.1 - How is the position of a star designated in the...Ch. 18.1 - Prob. 2PQCh. 18.1 - Prob. 18.1CECh. 18.2 - Prob. 1PQCh. 18.2 - Prob. 2PQCh. 18.3 - Prob. 1PQCh. 18.3 - Prob. 2PQCh. 18.4 - Prob. 1PQCh. 18.4 - Prob. 2PQCh. 18.5 - Prob. 1PQ
Ch. 18.5 - Prob. 2PQCh. 18.6 - Prob. 1PQCh. 18.6 - Prob. 2PQCh. 18.7 - Prob. 1PQCh. 18.7 - Prob. 2PQCh. 18.7 - Prob. 18.2CECh. 18 - Prob. AMCh. 18 - Prob. BMCh. 18 - Prob. CMCh. 18 - Prob. DMCh. 18 - Prob. EMCh. 18 - Prob. FMCh. 18 - Prob. GMCh. 18 - Prob. HMCh. 18 - Prob. IMCh. 18 - Prob. JMCh. 18 - Prob. KMCh. 18 - Prob. LMCh. 18 - Prob. MMCh. 18 - Prob. NMCh. 18 - Prob. OMCh. 18 - Prob. PMCh. 18 - Prob. QMCh. 18 - Prob. RMCh. 18 - Prob. SMCh. 18 - Prob. TMCh. 18 - Prob. UMCh. 18 - Prob. VMCh. 18 - Prob. WMCh. 18 - Prob. XMCh. 18 - Prob. YMCh. 18 - Prob. ZMCh. 18 - Prob. AAMCh. 18 - What is the point on the celestial sphere...Ch. 18 - Prob. 2MCCh. 18 - Prob. 3MCCh. 18 - Prob. 4MCCh. 18 - Prob. 5MCCh. 18 - Prob. 6MCCh. 18 - Prob. 7MCCh. 18 - What force keeps the all stars from flying apart?...Ch. 18 - Prob. 9MCCh. 18 - Prob. 10MCCh. 18 - Prob. 11MCCh. 18 - Prob. 12MCCh. 18 - Prob. 13MCCh. 18 - Prob. 14MCCh. 18 - Prob. 15MCCh. 18 - Prob. 16MCCh. 18 - Prob. 17MCCh. 18 - Prob. 18MCCh. 18 - Prob. 19MCCh. 18 - Prob. 20MCCh. 18 - The apparent change of the position of a star due...Ch. 18 - Prob. 2FIBCh. 18 - Prob. 3FIBCh. 18 - Prob. 4FIBCh. 18 - Prob. 5FIBCh. 18 - Prob. 6FIBCh. 18 - Prob. 7FIBCh. 18 - Prob. 8FIBCh. 18 - Prob. 9FIBCh. 18 - Prob. 10FIBCh. 18 - Prob. 11FIBCh. 18 - Prob. 12FIBCh. 18 - Prob. 13FIBCh. 18 - Prob. 14FIBCh. 18 - Prob. 15FIBCh. 18 - Prob. 16FIBCh. 18 - Prob. 17FIBCh. 18 - Prob. 18FIBCh. 18 - Prob. 19FIBCh. 18 - Prob. 20FIBCh. 18 - Prob. 1SACh. 18 - Prob. 2SACh. 18 - Prob. 3SACh. 18 - What is the vernal equinox, and what does it have...Ch. 18 - Prob. 5SACh. 18 - Prob. 6SACh. 18 - Prob. 7SACh. 18 - Prob. 8SACh. 18 - Prob. 9SACh. 18 - Prob. 10SACh. 18 - Prob. 11SACh. 18 - Prob. 12SACh. 18 - Prob. 13SACh. 18 - Prob. 14SACh. 18 - Prob. 15SACh. 18 - Prob. 16SACh. 18 - Prob. 17SACh. 18 - Prob. 18SACh. 18 - Prob. 19SACh. 18 - Prob. 20SACh. 18 - Prob. 21SACh. 18 - Prob. 22SACh. 18 - Prob. 23SACh. 18 - Prob. 24SACh. 18 - Prob. 25SACh. 18 - Prob. 26SACh. 18 - Prob. 27SACh. 18 - Prob. 28SACh. 18 - Prob. 29SACh. 18 - Prob. 30SACh. 18 - Prob. 31SACh. 18 - Prob. 32SACh. 18 - Prob. 33SACh. 18 - Prob. 34SACh. 18 - Prob. 35SACh. 18 - Prob. 36SACh. 18 - Prob. 37SACh. 18 - Prob. 38SACh. 18 - Prob. 39SACh. 18 - State three experimental findings that support the...Ch. 18 - Prob. 41SACh. 18 - Prob. 42SACh. 18 - Prob. 1VCCh. 18 - Prob. 1AYKCh. 18 - Prob. 2AYKCh. 18 - Prob. 3AYKCh. 18 - If you went outside on a clear night to locate...Ch. 18 - Prob. 5AYKCh. 18 - Prob. 6AYKCh. 18 - What major factor determines the future of the...Ch. 18 - Find the distance in parsecs to the star Altair,...Ch. 18 - The bright star Sirius has a parallax angle of...Ch. 18 - Calculate the number of seconds in a year (365...Ch. 18 - Prob. 4ECh. 18 - Prob. 5ECh. 18 - Prob. 6ECh. 18 - Prob. 7ECh. 18 - Prob. 8ECh. 18 - Prob. 9ECh. 18 - Prob. 10ECh. 18 - Prob. 11ECh. 18 - If Hubbles constant had a value of 75 km/s/Mpc,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Make a sketch of the Sun’s atmosphere showing the locations of the photosphere, chromosphere, and corona. What is the approximate temperature of each of these regions?arrow_forwardFrom the information in Figure 15.21, estimate the speed with which the particles in the CME in parts (c) and (d) are moving away from the Sun. Figure 15.21 Flare and Coronal Mass Ejection. This sequence of four images shows the evolution over time of a giant eruption on the Sun. (a) The event began at the location of a sunspot group, and (b) a flare is seen in far-ultraviolet light. (c) Fourteen hours later, a CME is seen blasting out into space. (d) Three hours later, this CME has expanded to form a giant cloud of particles escaping from the Sun and is beginning the journey out into the solar system. The white circle in (c) and (d) shows the diameter of the solar photosphere. The larger dark area shows where light from the Sun has been blocked out by a specially designed instrument to make it possible to see the faint emission from the corona. (credit a, b, c, d: modification of work by SOHO/EIT, SOHO/LASCO, SOHO/MDI (ESA & NASA))arrow_forwardCompare and contrast the four different types of solar activity above the photosphere.arrow_forward
- Rank the layers of the Sun based on their average temperature, from hottest to coolest. A) Corona B) Radiative Zone C) Convection Zone D) Chromospere E) Core F) Photosphere Answer: Submit All Answers Last Answer: EADBCF Incorrect, ONE try left!!arrow_forwardHow can we know that the sun will “die” in about 5 billion years? Choose the correct answer. A. We can see the evolution and death in the spectra B. We can see the entire process as it plays out in a star C. We look at thousands of stars like the sun and can see them in all stages of developmentarrow_forwardOrder the following statements so that they make sense according to star birth stages 1.At this stage, energy moves to the surface primarily through convection. At the end of this stage, the photosphere's temperature can reach 3,000K 2.In this stage, nuclear fusion starts and the energy transport mechanism switches from convection to radiative diffusion 3.In this stage, nuclear fusion rate is high enough to balance out the rate of radiative energy escape the surface 4.During this stage, gravitational contraction causes its luminosity to decrease because the protostar gets smaller while its surface temperature stays the samearrow_forward
- The figure shows a very simplified version of the structure of the Sun. For each statement below select, in order, the symbol in the picture.arrow_forwardIf the temperature at the centre of the sun is 15,000,000 K and the temperature of the photosphere is 5,800 K, what is the ratio of the temperature at the centre of the Sun compared to the photosphere? Express your final answer in the fully factorised form x : 1, where x is a number that you should determine to an appropriate number of significant figures and write it using scientific notation.arrow_forwardWhat is the approximate temperature of the sun at its chromosphere ?arrow_forward
- Give the following figure of the sun, label the features observed and describe some of the characteristics.arrow_forwardDescribe what the Sun would look like from Earth if the entire photosphere were the same temperature as a sunspot.arrow_forward57. Solar Power Collectors. This problem leads you through the calculation and discussion of how much solar power can in principle be collected by solar cells on Earth. a. Imagine a giant sphere with a radius of 1 AU surrounding the Sun. What is the surface area of this sphere, in square meters? (Hint: The formula for the surface area of a sphere is 4rr2.) b. Because this imaginary giant sphere surrounds the Sun, the Sun's entire luminosity of 3.8 × 1020 watts must pass through it. Calculate the power passing through each square meter of this imaginary sphere in watts per square meter. Explain why this number represents the maximum power per square meter that a solar collector in Earth orbit can collect. c. List several reasons why the average power per square meter collected by a solar collector on the ground will always be less than what you found in part b. d. Suppose you want to put a solar collector on your roof. If you want to optimize the amount of power you can collect, how…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning