DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 41RQ
What are some common examples of impression�die forgings?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 3: The inertia matrix can be written in dyadic form which is particularly useful
when inertia information is required in various vector bases. On the next page is a right
rectangular pyramid of total mass m. Note the location of point Q.
(a) Determine the inertia dyadic for the pyramid P, relative to point Q, i.e., 7%, for unit
vectors ₁₁, 2, 3.
Can you solve for v? Also, what is A x u
The external loads on the element shown below at the free end are F = 1.75 kN, P = 9.0
kN, and T = 72 Nm.
The tube's outer diameter is 50 mm and the inner diameter is 45 mm.
Given: A(the cross-sectional area) is 3.73 cm², Moment inertial I is 10.55 cm4, and J
polar moment inertial is 21.1 cm4.
Determine the following.
(1) The critical element(s) of the bar.
(2) Show the state of stress on a stress element for each critical element.
-120 mm-
F
Chapter 18 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 18 - Briefly describe the evolution of forming...Ch. 18 - What are some of the possible means of classifying...Ch. 18 - How are bulk deformation processes different from...Ch. 18 - Prob. 4RQCh. 18 - Prob. 5RQCh. 18 - Prob. 6RQCh. 18 - Prob. 7RQCh. 18 - Why is it undesirable to minimize friction between...Ch. 18 - Prob. 9RQCh. 18 - Prob. 10RQ
Ch. 18 - Prob. 11RQCh. 18 - Prob. 12RQCh. 18 - Prob. 13RQCh. 18 - Prob. 14RQCh. 18 - Why is foil almost always rolled on a cluster...Ch. 18 - Prob. 16RQCh. 18 - Prob. 17RQCh. 18 - Prob. 18RQCh. 18 - Prob. 19RQCh. 18 - Explain how hot�rolled products can have...Ch. 18 - What is mill scale, and how can it be removed?Ch. 18 - Discuss the problems in producing uniform...Ch. 18 - Prob. 23RQCh. 18 - How might the addition of horizontal tensions act...Ch. 18 - What are some other techniques to reduce roll...Ch. 18 - What is thermomechanical processing, and what are...Ch. 18 - Provide a concise description of the forging...Ch. 18 - What are some of the types of flow that can occur...Ch. 18 - Prob. 29RQCh. 18 - Prob. 30RQCh. 18 - Prob. 31RQCh. 18 - Prob. 32RQCh. 18 - Prob. 33RQCh. 18 - Prob. 34RQCh. 18 - Prob. 35RQCh. 18 - Prob. 36RQCh. 18 - Prob. 37RQCh. 18 - Prob. 38RQCh. 18 - Prob. 39RQCh. 18 - Describe some of the primary differences among...Ch. 18 - What are some common examples of impression�die...Ch. 18 - What are some of the significant requirements of...Ch. 18 - Why are different tolerances usually applied to...Ch. 18 - What are some of the roles played by lubricants in...Ch. 18 - What are some of the attractive features of...Ch. 18 - What types of product geometry can be produced by...Ch. 18 - What is upset forging?Ch. 18 - What are some of the typical products produced by...Ch. 18 - What types of products can be produced by...Ch. 18 - What are some of the attractive features of...Ch. 18 - How does roll forging differ from a conventional...Ch. 18 - Describe the swaging process.Ch. 18 - What kind of products are produced by swaging?Ch. 18 - How can the swaging process impart different sizes...Ch. 18 - What are some possible objectives of...Ch. 18 - Provide a concise definition of extrusion.Ch. 18 - What metals can be shaped by extrusion?Ch. 18 - What are some of the attractive features of the...Ch. 18 - What is the primary shape limitation of the...Ch. 18 - What is the primary benefit of indirect extrusion?Ch. 18 - What are some temperature considerations in hot...Ch. 18 - Why might lubricant selection be more critical in...Ch. 18 - What are some possible causes of surface cracks in...Ch. 18 - How might tubular products be made by extrusion?Ch. 18 - What types of products are made using a...Ch. 18 - Why can lubricants not be used in spider�mandrel...Ch. 18 - What are some of the attractive features of...Ch. 18 - What are some unique concerns and limitations of...Ch. 18 - What is the unique capability provided by...Ch. 18 - How is the feedstock pushed through the die in...Ch. 18 - Describe the Conform process of continuous...Ch. 18 - What types of feedstock can be used in continuous...Ch. 18 - How is wire, rod, and tube drawing different from...Ch. 18 - Why are rods generally drawn on draw benches,...Ch. 18 - Why is the reduction in area significantly...Ch. 18 - What is the difference between tube drawing and...Ch. 18 - For what types of products might a floating plug...Ch. 18 - What are some of the benefits of cold drawing of...Ch. 18 - What types of materials are used for...Ch. 18 - What is the benefit of a tandem wire drawing...Ch. 18 - What is cold forming?Ch. 18 - What types of products are produced by cold...Ch. 18 - What is impact extrusion and what variations...Ch. 18 - If a product contains a large�diameter head and...Ch. 18 - What are some of the attractive properties or...Ch. 18 - What process can be used to produce seamless pipe...Ch. 18 - What type of products can be made by the...Ch. 18 - What types of rivets can be used when there is...Ch. 18 - How is coining different from a process known as...Ch. 18 - Why might hubbing be an attractive way to produce...Ch. 18 - How might a peening operation increase the...Ch. 18 - What is burnishing?Ch. 18 - Prob. 1PCh. 18 - Consider the extrusion of a cylindrical billet,...Ch. 18 - The force required to compress a cylindrical solid...Ch. 18 - Prob. 4PCh. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - Prob. 7PCh. 18 - Prob. 8PCh. 18 - Based on the size, shape, and desired precision,...Ch. 18 - What types of engineering materials might be able...Ch. 18 - For each of the shape generation methods in part...Ch. 18 - Which of the combinations of part 4 do you feel...Ch. 18 - For this system, outline the specific steps that...Ch. 18 - For your proposed solution, would any additional...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A crate weighs 530 lb and is hung by three ropes attached to a steel ring at A such that the top surface is parallel to the xy plane. Point A is located at a height of h = 42 in above the top of the crate directly over the geometric center of the top surface. Use the dimensions given in the table below to determine the tension in each of the three ropes. 2013 Michael Swanbom ↑ Z C BY NC SA b x B у D Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 30 in b 43 in с 4.5 in The tension in rope AB is lb The tension in rope AC is lb The tension in rope AD is lbarrow_forwardThe airplane weighs 144100 lbs and flies at constant speed and trajectory given by 0 on the figure. The plane experiences a drag force of 73620 lbs. a.) If = 11.3°, determine the thrust and lift forces required to maintain this speed and trajectory. b.) Next consider the case where is unknown, but it is known that the lift force is equal to 7.8 times the quantity (Fthrust Fdrag). Compute the resulting trajectory angle - and the lift force in this case. Use the same values for the weight and drag forces as you used for part a. Уллу Fdrag 10. Ө Fthrust cc 10 2013 Michael Swanbom BY NC SA Flift Fweight The lift force acts in the y' direction. The weight acts in the negative y direction. The thrust and drag forces act in the positive and negative x' directions respectively. Part (a) The thrust force is equal to lbs. The lift force is equal to Part (b) The trajectory angle is equal to deg. The lift force is equal to lbs. lbs.arrow_forwardThe hoist consists of a single rope and an arrangement of frictionless pulleys as shown. If the angle 0 = 59°, determine the force that must be applied to the rope, Frope, to lift a load of 4.4 kN. The three-pulley and hook assembly at the center of the system has a mass of 22.5 kg with a center of mass that lies on the line of action of the force applied to the hook. e ΘΕ B CC 10 BY NC SA 2013 Michael Swanbom Fhook Note the figure may not be to scale. Frope = KN HO Fropearrow_forward
- Determine the tension developed in cables AB and AC and the force developed along strut AD for equilibrium of the 400-lb crate. x. 5.5 ft C 2 ft Z 2 ft D 6 ft B 4 ft A 2.5 ftarrow_forwardA block of mass m hangs from the end of bar AB that is 7.2 meters long and connected to the wall in the xz plane. The bar is supported at A by a ball joint such that it carries only a compressive force along its axis. The bar is supported at end B by cables BD and BC that connect to the xz plane at points C and D respectively with coordinates given in the figure. Cable BD is elastic and can be modeled as a linear spring with a spring constant k = 400 N/m and unstretched length of 6.34 meters. Determine the mass m, the compressive force in beam AB and the tension force in cable BC. Z D (c, 0, d) C (a, 0, b), A e B y f m BY NC SA x 2016 Eric Davishahl Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 8.1 m b 3.3 m C 2.7 m d 3.9 m e 2 m f 5.4 m The mass of the block is The compressive force in bar AB is The tension in cable S is N. kg.arrow_forwardTwo squirrels are sitting on the rope as shown. The squirrel at A has a weight of 1.2 lb. The squirrel at B found less food this season and has a weight of 0.8 lb. The angles 0 and > are equal to 50° and 60° respectively. Determine the tension force in each of the rope segments (T₁ in segment, T₂ in segment Я, and T3 in segment DD) as well as the angle a in degrees. Ө A α B Note the figure may not be to scale. T₁ = lb lb T2 T3 = = lb απ deg A BY NC SA 2013 Michael Swanbomarrow_forward
- Each cord can sustain a maximum tension of 500 N. Determine the largest mass of pipe that can be supported. B 60° A E Harrow_forward2. Link BD consists of a single bar 1 in. wide and 0.5 in. thick. Knowing that each pin has a in. diameter, determine (a) the maximum value of the normal stress in link BD and the bearing stress in link BD if 0 = 0, (b) the maximum value of the normal stress in link BD if 0 = 90. -6 in.- 12 in. 30° D 4 kipsarrow_forwardIn the image is a right rectangular pyramid of total mass m. Note the location of point Q. Determine the inertia dyadic for the pyramid P, relative to point Q for e hat unit vectors.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License