Operations Management
Operations Management
13th Edition
ISBN: 9781259667473
Author: William J Stevenson
Publisher: McGraw-Hill Education
bartleby

Concept explainers

Question
Book Icon
Chapter 18, Problem 1P

a)

1)

Summary Introduction

To determine: The system utilization rate.

Introduction: System utilization refers to percentage amount of capacity which is utilized or we can say that actual output is divided by potential output. It is operational metric for business which indicates aggregate productive capacity.

It reflects the ratio of demand to capacity or supply, it is also commonly known as Capacity utilization rate.

a)

1)

Expert Solution
Check Mark

Answer to Problem 1P

The system utilization rate is 0.600.

Explanation of Solution

Given information:

λ=3customer/hours

μ=5customer/hours

M=1

Formula,

ρ=λMμ

Where,

System utilization rate denoted by ρ

Demand rate (measured as arrival) denoted by λ

Supply rate (measured as service) denoted by Mμ

Calculation of the system utilization:

ρ=λMμ=31×5=0.6000

Therefore, system utilization rate is 0.6000.

1)

Summary Introduction

To determine: The system utilization rate.

Introduction: System utilization refers to percentage amount of capacity which is utilized or we can say that actual output is divided by potential output. It is operational metric for business which indicates aggregate productive capacity.

It reflects the ratio of demand to capacity or supply, it is also commonly known as Capacity utilization rate.

1)

Expert Solution
Check Mark

Answer to Problem 1P

The system utilization rate is 0.600.

Explanation of Solution

Given information:

λ=3customer/hours

μ=5customer/hours

M=1

Formula,

ρ=λMμ

Where,

System utilization rate denoted by ρ

Demand rate (measured as arrival) denoted by λ

Supply rate (measured as service) denoted by Mμ

Calculation of the system utilization:

ρ=λMμ=31×5=0.6000

Therefore, system utilization rate is 0.6000.

2)

Summary Introduction

To determine: The average number customers waiting for service in line.

2)

Expert Solution
Check Mark

Answer to Problem 1P

Average number of customers waiting in line (Lq) is 0.9000.

Explanation of Solution

Explanation

Given information:

λ=3customer/hours

μ=5customer/hours

Formula as per single server model of average number customers waiting for service in line

Lq=λ2μ(μλ)

Where,

Lq is denoted by average number customers waiting for service in line

Demand rate (measured as arrival) denoted by λ

Supply rate per server denoted by μ

Calculation of Average number of customers waiting in line (Lq):

Lq=λ2μ(μλ)=325(53)=0.900

Therefore, average number of customers waiting in line (Lq) is 0.9000.

3)

Summary Introduction

To determine: Average number of customers waiting time.

3)

Expert Solution
Check Mark

Answer to Problem 1P

The average number customers waiting time ( Wq ) is 0.3000.

Explanation of Solution

Given information:

λ=3customer/hours

Formula as per single server model of average number customers waiting for service in line:

Wq=Lqλ

Where,

Lq is denoted by average number customers waiting for service in line

Wq is denoted by average number customers waiting time

Demand rate (measured as arrival) denoted by λ

Calculation of Average number of customers waiting in line ( Wq ):

Wq=Lqλ=0.90003=0.3000

Therefore, average number customers waiting time ( Wq ) is 0.3000.

b)

1)

Summary Introduction

To determine: The average number of customer waiting for repairs.

b)

1)

Expert Solution
Check Mark

Answer to Problem 1P

Average number of customers waiting in line (Lq) is 2.250.

Explanation of Solution

Given information:

λ=3 repair calls/8-hour day

Mean service time: 2 hours

M =1

Calculation of μ

μ=productivehoursmeanservicetime=82=4repaircall/8-hour day

Formula as per single server model of average number customers waiting for service in line:

Lq=λ2μ(μλ)

Where,

Lq is denoted by average number customers waiting for service in line

Demand rate (measured as arrival) denoted by λ

Supply rate per server denoted by μ

Calculation of Average number of customers waiting in line (Lq):

Lq=λ2μ(μλ)=324(43)=2.250

Therefore, Average number of customers waiting in line (Lq) is 2.250.

1)

Summary Introduction

To determine: The average number of customer waiting for repairs.

1)

Expert Solution
Check Mark

Answer to Problem 1P

Average number of customers waiting in line (Lq) is 2.250.

Explanation of Solution

Given information:

λ=3 repair calls/8-hour day

Mean service time: 2 hours

M =1

Calculation of μ

μ=productivehoursmeanservicetime=82=4repaircall/8-hour day

Formula as per single server model of average number customers waiting for service in line:

Lq=λ2μ(μλ)

Where,

Lq is denoted by average number customers waiting for service in line

Demand rate (measured as arrival) denoted by λ

Supply rate per server denoted by μ

Calculation of Average number of customers waiting in line (Lq):

Lq=λ2μ(μλ)=324(43)=2.250

Therefore, Average number of customers waiting in line (Lq) is 2.250.

2)

Summary Introduction

To determine: The system utilization rate.

Introduction: It reflects the ratio of demand to capacity or supply, it is also commonly known as Capacity utilization rate.

2)

Expert Solution
Check Mark

Answer to Problem 1P

The system utilization rate is 0.750.

Explanation of Solution

Given information:

λ=3customer/hours

μ=4 repair calls/8-hour day

M=1

Formula,

ρ=λMμ

Where,

System utilization rate denoted by ρ

Demand rate (measured as arrival) denoted by λ

Supply rate (measured as service) denoted by Mμ

Calculation of the system utilization:

ρ=λMμ=31×4=0.750

Therefore, system utilization rate is 0.750.

3)

Summary Introduction

To determine: The idle time.

3)

Expert Solution
Check Mark

Answer to Problem 1P

The idle time is 2hours per day.

Explanation of Solution

Calculation of the idle time:

Idletimepercentage=1Systemutilization=10.75=25.00%

Idletimehours=Idletimepercentage ×working hour perday=25%×8hours/day=2hours

Therefore, idle time per day per hours is 2hours per day.

4)

Summary Introduction

To determine: Probability of two or more customers in the system.

4)

Expert Solution
Check Mark

Answer to Problem 1P

The probability of two or more customers in the system is 0.5625.

Explanation of Solution

Step 1: Calculate the probability of less than two:

P<2=1(λμ)=1(34)2=10.5625=0.4375

Therefore, probability of less than two is 0.4375.

Step 2: Calculation probability of two or more than customer in the system:

P2=1P<2=10.4375=0.5625

Therefore, probability of less than two is 0.5625.

c)

1)

Summary Introduction

To determine: The system utilization rate.

c)

1)

Expert Solution
Check Mark

Answer to Problem 1P

The system utilization rate is 0.750.

Explanation of Solution

Given information

λ=18customer/hours

μ=12customer/hours

M=2

Formula:

ρ=λMμ

Where,

System utilization rate denoted by ρ

Demand rate (measured as arrival) denoted by λ

Supply rate (measured as service) denoted by Mμ

Calculation of the system utilization:

ρ=λMμ=182×12=0.750

Therefore, system utilization rate is 0.7500.

1)

Summary Introduction

To determine: The system utilization rate.

1)

Expert Solution
Check Mark

Answer to Problem 1P

The system utilization rate is 0.750.

Explanation of Solution

Given information

λ=18customer/hours

μ=12customer/hours

M=2

Formula:

ρ=λMμ

Where,

System utilization rate denoted by ρ

Demand rate (measured as arrival) denoted by λ

Supply rate (measured as service) denoted by Mμ

Calculation of the system utilization:

ρ=λMμ=182×12=0.750

Therefore, system utilization rate is 0.7500.

2)

Summary Introduction

To determine: Average number of customers in the system (Ls).

2)

Expert Solution
Check Mark

Answer to Problem 1P

Average number of customers in the system (Ls) is 3.429.

Explanation of Solution

Step 1: Calculation of the average number of customer served

r=λμ=1812=1.5

Therefore average number of customer served is 1.5.

Step 2: find the value of Lq

Given information:

λμ = 1.5 and M is 2

Then, from Infinite-source values table we find that value for Lq is 1.929.

For reference:

Operations Management, Chapter 18, Problem 1P

Step 3Calculation of the average number of customers in the system (Ls)

Ls=Lq+λμ=1.929+1812=1.929+1.5=3.429

Therefore, the average number of customers in the system (Ls) is 3.429.

3)

Summary Introduction

To determine: Average time customers wait in line for service (Wq).

3)

Expert Solution
Check Mark

Answer to Problem 1P

Average time customers wait in line for service (Wq).is 0.107.

Explanation of Solution

Wq=Lqλ=1.92918=0.107

Therefore, the average time customers wait in line for service (Wq).is 0.107.

4)

Summary Introduction

To determine: The average waiting time for an arrival not immediately served (hours) (Wa).

4)

Expert Solution
Check Mark

Answer to Problem 1P

The average waiting time for an arrival not immediately served (hours) (Wa) is 0.167.

Explanation of Solution

Calculation of average waiting time for an arrival not immediately served (hours) (Wa):

Wa=1Mμλ=1(2×12)18=12418=16=0.167

Therefore, average waiting time for an arrival not immediately served (hours) (Wa) is 0.167 hours.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
وبة واضافة هذه القيمة الى القيم Ex: Assign each job for each worker at minimum total Cost عمل لكل عامل وبأقل كلفة ممكنة obs الأعمال Workors العمال J1 J2 J3 J4 W₁ 15 13 14 12 W2 11 12 15 13 W3 13 12 10 11 W4 15 17 14 16
The average completion time (flow time) for the sequence developed using the FCFS rule = 11.75 days (round your response to two decimal places). The percentage utilization for the sequence developed using the FCFS rule = 42.55 % (enter your response as a percentage rounded to two decimal places). b) Using the SPT (shortest processing time) decision rule for sequencing the jobs, the order is (to resolve a tie, use the order in which the jobs were received): An Alabama lumberyard has four jobs on order, as shown in the following table. Today is day 205 on the yard's schedule. In what sequence would the jobs be ranked according to the decision rules on the left: Job Due Date A 212 B 209 C 208 D 210 Duration (days) 6 3 3 8 Sequence 1 Job B 2 3 4 A D The average tardiness (job lateness) for the sequence developed using the SPT rule = 5.00 days (round your response to two decimal places). The average completion time (flow time) for the sequence developed using the SPT rule = 10.25 days…
With the aid of examples, fully discuss any five (5) political tactics used in organisations.
Knowledge Booster
Background pattern image
Operations Management
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,