CP Oscillations of a Piston. A vertical cylinder of radius r contains an ideal gas and is fitted with a piston of mass m that is free to move ( Fig. P18.79 ). The piston and the walls of the cylinder are frictionless, and the entire cylinder is placed in a constant-temperature bath. The outside air pressure is p 0 . In equilibrium, the piston sits at a height h above the bottom of the cylinder. (a) Find the absolute pressure of the gas trapped below the piston when in equilibrium. (b) The piston is pulled up by a small distance and released. Find the net force acting on the piston when its base is a distance h + y above the bottom of the cylinder, where y ≪ h. (c) After the piston is displaced from equilibrium and released, it oscillates up and down. Find the frequency of these small oscillations. If the displacement is not small, are the oscillations simple harmonic? How can you tell? Figure P18.79
CP Oscillations of a Piston. A vertical cylinder of radius r contains an ideal gas and is fitted with a piston of mass m that is free to move ( Fig. P18.79 ). The piston and the walls of the cylinder are frictionless, and the entire cylinder is placed in a constant-temperature bath. The outside air pressure is p 0 . In equilibrium, the piston sits at a height h above the bottom of the cylinder. (a) Find the absolute pressure of the gas trapped below the piston when in equilibrium. (b) The piston is pulled up by a small distance and released. Find the net force acting on the piston when its base is a distance h + y above the bottom of the cylinder, where y ≪ h. (c) After the piston is displaced from equilibrium and released, it oscillates up and down. Find the frequency of these small oscillations. If the displacement is not small, are the oscillations simple harmonic? How can you tell? Figure P18.79
CP Oscillations of a Piston. A vertical cylinder of radius r contains an ideal gas and is fitted with a piston of mass m that is free to move (Fig. P18.79). The piston and the walls of the cylinder are frictionless, and the entire cylinder is placed in a constant-temperature bath. The outside air pressure is p0. In equilibrium, the piston sits at a height h above the bottom of the cylinder. (a) Find the absolute pressure of the gas trapped below the piston when in equilibrium. (b) The piston is pulled up by a small distance and released. Find the net force acting on the piston when its base is a distance h + y above the bottom of the cylinder, where y ≪ h. (c) After the piston is displaced from equilibrium and released, it oscillates up and down. Find the frequency of these small oscillations. If the displacement is not small, are the oscillations simple harmonic? How can you tell?
Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.
Three point-like charges are placed as shown in the attach image, where r1 = r2 = 44.0 cm. Find the magnitude of the electric force exerted on the charge q3. Let q1 = -1.90 uC, q2 = -2.60 uC, and q3 = +3.60 uC. Thank you.
The drawing attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while Surface (2) has an area of 3.90 m². The electric field in magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle theta made between the electric field with surface (2) is 30.0 degrees. Thank you.
Chapter 18 Solutions
University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.