
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 18.75P
To determine
The
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to
support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m.
Truck body
yo
Main leaf
spring
-"Helper"
spring
Axle
(a) What is the compression of the leaf spring for a load of 6.00 × 105 N?
Your response differs from the correct answer by more than 10%. Double check your calculations. m
(b) How much work is done in compressing the springs?
☑
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J
A spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The
incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest?
m
m
0
k
wwww
Chapter 18 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 18.1 - Rank the following ideal gases in order from...Ch. 18.2 - Prob. 18.2TYUCh. 18.3 - Rank the following gases in order from (a) highest...Ch. 18.4 - A cylinder with a fixed volume contains hydrogen...Ch. 18.5 - A quantity of gas containing N molecules has a...Ch. 18.6 - The average atmospheric pressure on Mars is 6.0 ...Ch. 18 - Section 18.1 states that ordinarily, pressure,...Ch. 18 - In the ideal-gas equation, could an equivalent...Ch. 18 - When a car is driven some distance, the air...Ch. 18 - The coolant in an automobile radiator is kept at a...
Ch. 18 - Unwrapped food placed in a freezer experiences...Ch. 18 - A group of students drove from their university...Ch. 18 - The derivation of the ideal-gas equation included...Ch. 18 - A rigid, perfectly insulated container has a...Ch. 18 - (a) Which has more atoms: a kilogram of hydrogen...Ch. 18 - Use the concepts of the kinetic-molecular model to...Ch. 18 - The proportions of various gases in the earths...Ch. 18 - Comment on the following statement: When two gases...Ch. 18 - Prob. 18.13DQCh. 18 - The temperature of an ideal gas is directly...Ch. 18 - If the pressure of an ideal monatomic gas is...Ch. 18 - In deriving the ideal-gas equation from the...Ch. 18 - Imagine a special air filter placed in a window of...Ch. 18 - Prob. 18.18DQCh. 18 - Consider two specimens of ideal gas at the same...Ch. 18 - The temperature of an ideal monatomic gas is...Ch. 18 - Prob. 18.21DQCh. 18 - (a) If you apply the same amount of heat to 1.00...Ch. 18 - Prob. 18.23DQCh. 18 - In a gas that contains N molecules, is it accurate...Ch. 18 - The atmosphere of the planet Mars is 95.3% carbon...Ch. 18 - Prob. 18.26DQCh. 18 - Ice is slippery to walk on, and especially...Ch. 18 - Hydrothermal vents are openings in the ocean floor...Ch. 18 - The dark areas on the moons surface are called...Ch. 18 - In addition to the normal cooking directions...Ch. 18 - A 20.0-L tank contains 4.86 104 kg of helium at...Ch. 18 - Helium gas with a volume of 3.20 L, under a...Ch. 18 - A cylindrical tank has a tight-fitting piston that...Ch. 18 - A 3.00-L lank contains air at 3.00 atm and 20.0C....Ch. 18 - Planetary Atmospheres. (a) Calculate the density...Ch. 18 - You have several identical balloons. You...Ch. 18 - A Jaguar XK8 convertible has an eight-cylinder...Ch. 18 - A welder using a tank of volume 0.0750 m3 fills it...Ch. 18 - A large cylindrical tank contains 0.750 m3 of...Ch. 18 - An empty cylindrical canister 1.50 m long and 90.0...Ch. 18 - The gas inside a balloon will always have a...Ch. 18 - An ideal gas has a density of 1.33 106 g/cm3 at...Ch. 18 - If a certain amount of ideal gas occupies a volume...Ch. 18 - A diver observes a bubble of air rising from the...Ch. 18 - A metal tank with volume 3.10 L will burst if the...Ch. 18 - Three moles of an ideal gas are in a rigid cubical...Ch. 18 - With the assumptions of Example 18.4 (Section...Ch. 18 - With the assumption that the air temperature is a...Ch. 18 - (a) Calculate the mass of nitrogen present in a...Ch. 18 - At an altitude of 11,000 m (a typical cruising...Ch. 18 - Prob. 18.21ECh. 18 - Prob. 18.22ECh. 18 - Modern vacuum pumps make it easy to attain...Ch. 18 - The Lagoon Nebula (Fig. E18.24) is a cloud of...Ch. 18 - In a gas at standard conditions, what is the...Ch. 18 - How Close Together Are Gas Molecules? Consider an...Ch. 18 - (a) What is the total translational kinetic energy...Ch. 18 - A flask contains a mixture of neon (Ne), krypton...Ch. 18 - We have two equal-size boxes, A and B. Each box...Ch. 18 - A container with volume 1.64 L is initially...Ch. 18 - Prob. 18.31ECh. 18 - Martian Climate. The atmosphere of Mars is mostly...Ch. 18 - Prob. 18.33ECh. 18 - Calculate the mean free path of air molecules at...Ch. 18 - At what temperature is the root-mean-square speed...Ch. 18 - Prob. 18.36ECh. 18 - Prob. 18.37ECh. 18 - Perfectly rigid containers each hold n moles of...Ch. 18 - (a) Compute the specific heat at constant volume...Ch. 18 - Prob. 18.40ECh. 18 - Prob. 18.41ECh. 18 - For a gas of nitrogen molecules (N2), what must...Ch. 18 - Prob. 18.43ECh. 18 - Meteorology. The vapor pressure is the pressure of...Ch. 18 - Calculate the volume of 1.00 mol of liquid water...Ch. 18 - A physics lecture room at 1.00 atm and 27.0C has a...Ch. 18 - CP BIO The Effect of Altitude on the Lungs. (a)...Ch. 18 - CP BIO The Bends. If deep-sea divers rise to the...Ch. 18 - CP A hot-air balloon stays aloft because hot air...Ch. 18 - In an evacuated enclosure, a vertical cylindrical...Ch. 18 - A cylinder 1.00 m tall with inside diameter 0.120...Ch. 18 - CP During a test dive in 1939, prior to being...Ch. 18 - Atmosphere or Titan. Titan, the largest satellite...Ch. 18 - Pressure on Venus. At the surface of Venus the...Ch. 18 - An automobile tire has a volume of 0.0150 m3 on a...Ch. 18 - A flask with a volume of 1.50 L, provided with a...Ch. 18 - CP A balloon of volume 750 m3 is to be filled with...Ch. 18 - A vertical cylindrical tank contains 1.80 mol of...Ch. 18 - CP A large tank of water has a hose connected to...Ch. 18 - CP A light, plastic sphere with mass m = 9.00 g...Ch. 18 - Prob. 18.61PCh. 18 - BIO A person at rest inhales 0.50 L of air with...Ch. 18 - You have two identical containers, one containing...Ch. 18 - The size of an oxygen molecule is about 2.0 1010...Ch. 18 - A sealed box contains a monatomic ideal gas. The...Ch. 18 - Helium gas is in a cylinder that has rigid walls....Ch. 18 - You blow up a spherical balloon to a diameter of...Ch. 18 - CP (a) Compute the increase in gravitational...Ch. 18 - Prob. 18.69PCh. 18 - Prob. 18.70PCh. 18 - It is possible to make crystalline solids that are...Ch. 18 - Hydrogen on the Sun. The surface of the sun has a...Ch. 18 - Prob. 18.73PCh. 18 - Planetary Atmospheres. (a) The temperature near...Ch. 18 - Prob. 18.75PCh. 18 - Prob. 18.76PCh. 18 - CALC (a) Explain why in a gas of N molecules, the...Ch. 18 - Prob. 18.78PCh. 18 - CP Oscillations of a Piston. A vertical cylinder...Ch. 18 - Prob. 18.80PCh. 18 - DATA The Dew Point and Clouds. The vapor pressure...Ch. 18 - DATA The statistical quantities average value and...Ch. 18 - CP Dark Nebulae and the Interstellar Medium. The...Ch. 18 - CALC Earths Atmosphere. In t he troposphere, the...Ch. 18 - Prob. 18.85PPCh. 18 - Estimate the ratio of the thermal conductivity of...Ch. 18 - The rate of effusionthat is, leakage of a gas...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. Ө m i (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s² Direction O up the incline down the inclinearrow_forward(a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. -A 3.00 m B C -6.00 m i (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) marrow_forwardA ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т m a d T m b i (a) Find the speed of the ball just as it touches the spring. 3.34 m/s (b) Find the force constant of the spring. Your response differs from the correct answer by more than 10%. Double check your calculations. kN/marrow_forward
- I need help with questions 1-10 on my solubility curve practice sheet. I tried to my best ability on the answers, however, i believe they are wrong and I would like to know which ones a wrong and just need help figuring it out.arrow_forwardQuestion: For a liquid with typical values a = 10-3K-¹ K = 10-4 bar-1 V=50 cm³ mol-1, Cp 200 J mol-1K-1, calculate the following quantities at 300 K and 1 bar for one mole of gas: 1. () P ән 2. (9) T 3. (V) T 4. (1) P 5. (9) T 6. Cv 7. (OF)Tarrow_forwardA,B,C AND Darrow_forward
- A bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward210. Sometimes the Helmholtz free energy F(T, V, N) divided by temperature, T, is an interesting quantity. For example, the quantity is proportional to the logarithm of the equilibrium constant or solubilities. A. Derive a relationship showing that Find the constant of proportionality. a F αυ ƏT T B. Suppose F(T) depends on temperature in the following way: F(T)=2aT²+bT. Find S(T) and U(T).arrow_forwardchoosing East (e) is not correct!arrow_forward
- disks have planes that are parallel and centered Three polarizing On a common axis. The direction of the transmission axis Colish dashed line) in each case is shown relative to the common vertical direction. A polarized beam of light (with its axis of polarization parallel to the horizontal reference direction) is incident from the left on the first disk with int intensity So = 790 W/m². Calculate the transmitted intensity if 81=28.0° O2-35.0°, and O3 = 40.0° w/m² horizontal Өз 02arrow_forwardA polarized light is incident on several polarizing disks whose planes are parallel and centered on common axis. Suppose that the transmission axis of the first polarizer is rotated 20° relative to the axis of polarization of the incident and that the transmission axis of each exis of light, additional analyzer is rotated 20° relative to the transmission axis the previous one. What is the minimum number of polarizer needed (whole number), so the transmitted light through all polarizing sheets has an Striking intensity that is less then 10% that the first polarizer?arrow_forwardA high energy pulsed laser emits 1.5 nano second-long pulse of average power 1.80x10" W. The beam is cylindrical with 2.00 mm in radius. Determine the rms value of the B-field? -Tarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University