Heat flux The heat flow vector field for conducting objects is F = – k ▿ T , where T ( x , y , z ) is the temperature in the object and k > 0 is a constant that depends on the material. Compute the outward flux of F across the following surfaces S for the given temperature distributions. Assume k = 1. 61. T ( x , y , z ) = 100 e − x − y ; S consists of the faces of the cube | x | ≤ 1 , | y | ≤ 1 , | z | ≤ 1 .
Heat flux The heat flow vector field for conducting objects is F = – k ▿ T , where T ( x , y , z ) is the temperature in the object and k > 0 is a constant that depends on the material. Compute the outward flux of F across the following surfaces S for the given temperature distributions. Assume k = 1. 61. T ( x , y , z ) = 100 e − x − y ; S consists of the faces of the cube | x | ≤ 1 , | y | ≤ 1 , | z | ≤ 1 .
Solution Summary: The author explains how to compute the outward flux of F across the surface S.
Heat fluxThe heat flow vector field for conducting objects isF = –k▿T, where T(x, y, z) is the temperature in the object and k > 0 is a constant that depends on the material. Compute the outward flux ofFacross the following surfaces S for the given temperature distributions. Assume k = 1.
61.
T
(
x
,
y
,
z
)
=
100
e
−
x
−
y
; S consists of the faces of the cube
|
x
|
≤
1
,
|
y
|
≤
1
,
|
z
|
≤
1
.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
The bracket BCD is hinged at C and attached to a control cable at B. Let F₁ = 275 N and F2 = 275 N.
F1
B
a=0.18 m
C
A
0.4 m
-0.4 m-
0.24 m
Determine the reaction at C.
The reaction at C
N Z
F2
D
The correct answer is C,i know that we need to use stokes theorem and parametrize the equations then write the equation F with respect to the curve but i cant seem to find a way to do it, the integral should be from 0 to 2pi but i might be wrongcould you show me the steps to get to 18pi
A 10-ft boom is acted upon by the 810-lb force as shown in the figure.
D
6 ft
6 ft
E
B
7 ft
C
6 ft
4 ft
W
Determine the tension in each cable and the reaction at the ball-and-socket joint at A.
The tension in cable BD is
lb.
The tension in cable BE is
lb.
The reaction at A is (
lb) i +
Ib) j. (Include a minus sign if necessary.)
Chapter 17 Solutions
Calculus: Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY