Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. a. If the surface S is given by { ( x , y , z ) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , z = 10 } , then ∬ S f ( x , y , z ) d S = ∫ 0 1 ∫ 0 1 f ( x , y , 10 ) d x d y . b. If the surface S is given by { ( x , y , z ) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , z = x } , then ∬ S f ( x , y , z ) d S = ∫ 0 1 ∫ 0 1 f ( x , y , z ) d x d y . c. The surface r = ( v cos u , v sin u , v 2 ), for 0 ≤ u ≤ π , 0 ≤ v ≤ 2 , is the same as the surface r = 〈 v cos 2 u , v sin 2 u , v 〉 , for 0 ≤ u ≤ π / 2 , 0 ≤ v ≤ 4 . d. Given the standard parameterization of a sphere, the normal vectors t u × t v are outward normal vectors.
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. a. If the surface S is given by { ( x , y , z ) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , z = 10 } , then ∬ S f ( x , y , z ) d S = ∫ 0 1 ∫ 0 1 f ( x , y , 10 ) d x d y . b. If the surface S is given by { ( x , y , z ) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , z = x } , then ∬ S f ( x , y , z ) d S = ∫ 0 1 ∫ 0 1 f ( x , y , z ) d x d y . c. The surface r = ( v cos u , v sin u , v 2 ), for 0 ≤ u ≤ π , 0 ≤ v ≤ 2 , is the same as the surface r = 〈 v cos 2 u , v sin 2 u , v 〉 , for 0 ≤ u ≤ π / 2 , 0 ≤ v ≤ 4 . d. Given the standard parameterization of a sphere, the normal vectors t u × t v are outward normal vectors.
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
a. If the surface S is given by
{
(
x
,
y
,
z
)
:
0
≤
x
≤
1
,
0
≤
y
≤
1
,
z
=
10
}
, then
∬
S
f
(
x
,
y
,
z
)
d
S
=
∫
0
1
∫
0
1
f
(
x
,
y
,
10
)
d
x
d
y
.
b. If the surface S is given by
{
(
x
,
y
,
z
)
:
0
≤
x
≤
1
,
0
≤
y
≤
1
,
z
=
x
}
, then
∬
S
f
(
x
,
y
,
z
)
d
S
=
∫
0
1
∫
0
1
f
(
x
,
y
,
z
)
d
x
d
y
.
c. The surface r = (v cos u, v sin u, v2), for
0
≤
u
≤
π
,
0
≤
v
≤
2
, is the same as the surface
r
=
〈
v
cos
2
u
,
v
sin
2
u
,
v
〉
, for
0
≤
u
≤
π
/
2
,
0
≤
v
≤
4
.
d. Given the standard parameterization of a sphere, the normal vectorstu × tv are outward normal vectors.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Find the
Soultion to the following dy
differential equation using Fourier in
transforms:
=
, хуо, ухо
according to the terms:
lim u(x,y) = 0
x18
lim 4x (x,y) = 0
x14
2
u (x, 0) =
=\u(o,y) =
-y
لو
Can you solve question 3,4,5 and 6 for this question
water at a rate of 2 m³/min.
of the water height in this tank?
16) A box with a square base and an open top must have a volume of 256 cubic inches. Find the dimensions of the
box that will minimize the amount of material used (the surface area).
17) A farmer wishes to
Chapter 17 Solutions
Calculus: Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.