Heat flux Suppose a solid object in ¡ 3 has a temperature distribution given by T ( x, y, z ). The heat flow vector field in the object is F = –k ▿ T, where the conductivity k > 0 is a property of the material. Note that the heat flow vector points in the direction opposite that of the gradient, which is the direction of greatest temperature decrease. The divergence of the heat flow vector is ▿· F = – k ▿·▿ T = –k ▿ 2 T (the Laplacian of T). Compute the heat flow vector field and its divergence for the following temperature distributions. 56. T ( x , y , z ) = 100 e − x 2 + y 2 + z 2
Heat flux Suppose a solid object in ¡ 3 has a temperature distribution given by T ( x, y, z ). The heat flow vector field in the object is F = –k ▿ T, where the conductivity k > 0 is a property of the material. Note that the heat flow vector points in the direction opposite that of the gradient, which is the direction of greatest temperature decrease. The divergence of the heat flow vector is ▿· F = – k ▿·▿ T = –k ▿ 2 T (the Laplacian of T). Compute the heat flow vector field and its divergence for the following temperature distributions. 56. T ( x , y , z ) = 100 e − x 2 + y 2 + z 2
Solution Summary: The author calculates the heat flow vector field and its divergence, based on a solid object in R3.
Heat fluxSuppose a solid object in ¡3has a temperature distribution given by T(x, y, z). The heat flow vector field in the object isF = –k▿T, where the conductivity k > 0 is a property of the material. Note that the heat flow vector points in the direction opposite that of the gradient, which is the direction of greatest temperature decrease. The divergence of the heat flow vector is ▿·F = –k ▿·▿T = –k▿2T (the Laplacian of T). Compute the heat flow vector field and its divergence for the following temperature distributions.
56.
T
(
x
,
y
,
z
)
=
100
e
−
x
2
+
y
2
+
z
2
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Use the information to find and compare Δy and dy. (Round your answers to four decimal places.)
y = x4 + 7 x = −3 Δx = dx = 0.01
Δy =
dy =
4. A car travels in a straight line for one hour. Its velocity, v, in miles per hour at six minute intervals is shown
in the table. For each problem, approximate the distance the car traveled (in miles) using the given method,
on the provided interval, and with the given number of rectangles or trapezoids, n.
Time (min) 0 6 12 18|24|30|36|42|48|54|60
Speed (mph) 0 10 20 40 60 50 40 30 40 40 65
a.) Left Rectangles, [0, 30] n=5
b.) Right Rectangles, [24, 42] n=3
c.) Midpoint Rectangles, [24, 60] n=3
d.) Trapezoids, [0, 24] n=4
The bracket BCD is hinged at C and attached to a control cable at B. Let F₁ = 275 N and F2 = 275 N.
F1
B
a=0.18 m
C
A
0.4 m
-0.4 m-
0.24 m
Determine the reaction at C.
The reaction at C
N Z
F2
D
Chapter 17 Solutions
Calculus: Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.