Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in stokes’ Theorem to determine the value of the surface integral ∬ s ( ∇ × F ) ∙ n dS . Assume n points in an upward direction. 23. F = 〈 y , 1 , z 〉 ; S is the part of the surface z = 2 x that lies within the cone z = x 2 + y 2 .
Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in stokes’ Theorem to determine the value of the surface integral ∬ s ( ∇ × F ) ∙ n dS . Assume n points in an upward direction. 23. F = 〈 y , 1 , z 〉 ; S is the part of the surface z = 2 x that lies within the cone z = x 2 + y 2 .
Solution Summary: The author evaluates the surface integral by obtaining line integral in Stokes' theorem, where n is the unit vector normal to S determined by the orientation of S.
Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in stokes’ Theorem to determine the value of the surface integral
∬
s
(
∇
×
F
)
∙ndS. Assume n points in an upward direction.
23.
F
=
〈
y
,
1
,
z
〉
; S is the part of the surface
z
=
2
x
that lies within the cone
z
=
x
2
+
y
2
.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
A 20 foot ladder rests on level ground; its head (top) is against a vertical wall. The bottom of the ladder begins by being 12 feet from the wall but begins moving away at the rate of 0.1 feet per second. At what rate is the top of the ladder slipping down the wall? You may use a calculator.
Explain the focus and reasons for establishment of 12.4.1(root test) and 12.4.2(ratio test)
use Integration by Parts to derive 12.6.1
Chapter 17 Solutions
Calculus: Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.