Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17.4, Problem 73P
Compute the time needed to unravel 5 m of cable from the spool if the spool and cable have a total mass of 600 kg and a radius of gyration of kO = 1.2 m. For the calculation, neglect the mass of the cable being unwound and the mass of the rollers at A and B. The rollers turn with no friction.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The 186-kg wheel has a radius of gyration about its center O of ko = 300 mm, and
radius r = 0.4 m. When the wheel is subjected to the constant couple moment M =
92 N.m, it starts rolling from rest. Determine the average friction force that the
ground applies to the wheel if it has been rolling without slipping. Please pay
attention: the numbers may change since they are randomized. Your answer must
include 2 places after the decimal point, and proper Sl unit. Take g = 9.81 m/s².
M
Your Answer:
units
Answer
The motorcycle in the figure has a mass of m1 kg and its center of mass is at G1. The mass of the driver is m2 kg and the center of mass is at G2. Since there is fs between the wheels and the asphalt, determine whether it is possible for the driver to lift the front wheel off the ground. Neglect the mass of the wheels and assume that the front wheel can spin freely.
a=0.41 m b= 0.39 m c= 0.75 m d= 0.25 m e=0.58 m m1=120 kg m2= 77 kg fs=0.82
A man pushes bar CD to either initiate uphill motion of the homogeneous spool or to just keep the homogeneous spool from moving downhill. The spool has mass M = 78 kg. If slippage first occurs at B, calculate the smallest force P in N that the man must apply to the bar CD to initiate uphill motion of the spool and If slippage first occurs at A, calculate the smallest force P in N that the man must apply to the bar CD to initiate uphill motion of the spool.
Chapter 17 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 17.1 - The rod's density end cross-sectional area. A are...Ch. 17.1 - Determine the mass of the cylinder end its moment...Ch. 17.1 - The nag has a mass m.Ch. 17.1 - Determine the radius of gyration kx. The density...Ch. 17.1 - The specific weight of the material is = 380...Ch. 17.1 - Determine the moment of inertia Iz and express the...Ch. 17.1 - Determine the moment of inertia Ix and express the...Ch. 17.1 - Defending the moment of inertia Iy and express the...Ch. 17.1 - Express the result in terms of the mass m of the...Ch. 17.1 - Determine me radius of gyration of the pendulum...
Ch. 17.1 - Determine the mass moment of inertia of the...Ch. 17.1 - Determine the moment of inertia of the solid steel...Ch. 17.1 - Determine the wheels moment of inertia about an...Ch. 17.1 - If the large ring, small ring and each of the...Ch. 17.1 - The thin plate has a hole in its center its...Ch. 17.1 - The material has a mass per unit area of 20 kg/m2.Ch. 17.1 - The block has a mass of 3 kg and the semicylinder...Ch. 17.1 - The block has a mass of 3 kg and the semicylinder...Ch. 17.1 - The material has a specific weight = 90 lb/ft3.Ch. 17.1 - Prob. 20PCh. 17.1 - Determine the location y of the center of mass G...Ch. 17.1 - The material is steel having a density of = 7.85...Ch. 17.1 - The material is steel having a density of = 7.85...Ch. 17.3 - Draw the free-body and kinetic diagrams of the...Ch. 17.3 - Draw the free-body and kinetic diagrams of the...Ch. 17.3 - Determine the acceleration of the can and the...Ch. 17.3 - If the 80-kg cabinet is allowed to roll down the...Ch. 17.3 - Determine the maximum acceleration of the frame...Ch. 17.3 - Also what is the corresponding normal reaction on...Ch. 17.3 - Determine the tension developed in the rods and...Ch. 17.3 - If it is subjected to a couple moment M = 450 N ...Ch. 17.3 - Determine how far the door moves in 25, starting...Ch. 17.3 - Determine the constant force F that must be...Ch. 17.3 - Initially at take-off the engines provide a thrust...Ch. 17.3 - If it starts from rest it causes the rear wheels...Ch. 17.3 - If the winch at B draws in the cable with an...Ch. 17.3 - Determine the greatest acceleration of the...Ch. 17.3 - Determine the internal axial, shear, and...Ch. 17.3 - If the coefficient of kinetic friction between the...Ch. 17.3 - Determine the reactions at both the wheels at A...Ch. 17.3 - Also, what is the acceleration of the cart? The...Ch. 17.3 - If it is subjected to a horizontal force of P =...Ch. 17.3 - Determine its initial acceleration if a man pushes...Ch. 17.3 - Determine the initial acceleration of a desk when...Ch. 17.3 - Determine the maximum force P that can be applied...Ch. 17.3 - Determine the maximum force P that can be applied...Ch. 17.3 - If it is released from rest, determine the...Ch. 17.3 - It is carried on a truck as shown. Determine the...Ch. 17.3 - It is carried on a truck as shown. If the truck...Ch. 17.3 - Determine the smallest acceleration that will...Ch. 17.3 - The coefficients of static and kinetic friction...Ch. 17.3 - If the collar is given a constant acceleration of...Ch. 17.3 - If it is supported by the cable AB and hinge at C,...Ch. 17.3 - If it is supported by the cable AB and hinge at C,...Ch. 17.3 - If the acceleration is a = 20 ft/s2, determine the...Ch. 17.3 - If h = 3 ft, determine the snowmobiles maximum...Ch. 17.3 - If the carts mass is 30 kg and it is subjected to...Ch. 17.3 - The uniform rod BC has a mass of 15 kg.Ch. 17.3 - If the acceleration of the truck is at = 0.5 m/s2,...Ch. 17.3 - If the angle = 30, determine the acceleration of...Ch. 17.3 - Determine the largest initial angular acceleration...Ch. 17.3 - Determine the initial friction and normal force of...Ch. 17.3 - Determine the largest initial angular acceleration...Ch. 17.3 - Determine the normal force NE, shear force VE, and...Ch. 17.4 - If the wheel starts from rest determine its...Ch. 17.4 - Determine the angular velocity of the disk when t...Ch. 17.4 - Determine the tangential and normal components of...Ch. 17.4 - Determine the tangential and normal components or...Ch. 17.4 - Determine the horizontal and vertical components...Ch. 17.4 - If the rod has a counterclockwise angular velocity...Ch. 17.4 - If the wheel is subjected to a moment M = (5t) N ...Ch. 17.4 - Determine its initial angular acceleration and the...Ch. 17.4 - If it is released from rest when = 0. determine...Ch. 17.4 - If it is released from rest in the position shown,...Ch. 17.4 - The reel rests on rollers at A and B and has a...Ch. 17.4 - The spring has a stiffness k = 5 lb ft/rad, so...Ch. 17.4 - The spring has a stiffness k = 5 lb ft/rad, so...Ch. 17.4 - If a force of F=(142)N, where is in radians, is...Ch. 17.4 - If no slipping occurs between them determine the...Ch. 17.4 - Show that IG may be eliminated by moving the...Ch. 17.4 - Treat the beam as a uniform slender rod.Ch. 17.4 - It consists of a 100-kg steel plate AC and a...Ch. 17.4 - It is pin supported at both ends by two brackets...Ch. 17.4 - It is pin supported at both ends by two brackets...Ch. 17.4 - Determine its angular velocity when t = 2 s...Ch. 17.4 - If it is placed on the ground for which the...Ch. 17.4 - Compute the time needed to unravel 5 m of cable...Ch. 17.4 - If the rotor always maintains a constant clockwise...Ch. 17.4 - It is originally spinning at = 40 rad/s. If it is...Ch. 17.4 - It is pin supported at both ends by two brackets...Ch. 17.4 - Disk E has a weight of 60 lb and is initially at...Ch. 17.4 - If the cylinders are released from rest, determine...Ch. 17.4 - If the pulley can be treated as a disk of mass 3...Ch. 17.4 - If the pulley can be treated as a disk of mass M,...Ch. 17.4 - Assume that the board is uniform and rigid, and...Ch. 17.4 - At the instant the rolor is horizontal it has an...Ch. 17.4 - Determine the initial tending moment at the fixed...Ch. 17.4 - Movement is controlled by the electromagnet E,...Ch. 17.4 - If it is rotating in the vertical plane at a...Ch. 17.4 - Determine the angular acceleration of the rod and...Ch. 17.4 - Determine the horizontal and vertical components...Ch. 17.4 - Determine the horizontal and vertical components...Ch. 17.5 - If the powder burns at a constant rate of 20 g/s...Ch. 17.5 - Determine the acceleration of the bars mass center...Ch. 17.5 - Determine the acceleration of its mass center and...Ch. 17.5 - When the wheel is subjected to the couple moment,...Ch. 17.5 - Determine the angular acceleration of the sphere...Ch. 17.5 - If the couple moment is applied to the spool and...Ch. 17.5 - If the rod is released from rest at = 0,...Ch. 17.5 - rolls without slipping, show that when moments are...Ch. 17.5 - If it is initially at rest and is subjected to a...Ch. 17.5 - The uniform 150-lb beam is initially at rest when...Ch. 17.5 - If the coefficients of static and kinetic friction...Ch. 17.5 - If the coefficients of static and kinetic friction...Ch. 17.5 - If the coefficients of static and kinetic friction...Ch. 17.5 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17.5 - If the coefficients of static and kinetic friction...Ch. 17.5 - If a horizontal force of F = 80 N is applied to...Ch. 17.5 - If slipping does not occur, determine the rings...Ch. 17.5 - Neglect the thickness of the ring.Ch. 17.5 - Using a collar of negligible mass, its end A is...Ch. 17.5 - If the pin is connected to a track which is giver...Ch. 17.5 - Assume the roller to be a uniform cylinder and...Ch. 17.5 - Also, find the angular acceleration of the roller....Ch. 17.5 - Determine the bars initial angular acceleration...Ch. 17.5 - Solve Prob.17-106 if the roller is removed and the...Ch. 17.5 - If the coefficient of static friction at A is s, =...Ch. 17.5 - If the truck has an acceleration of 3 m/s2...Ch. 17.5 - A cord is wrapped around the periphery of the disk...Ch. 17.5 - If the coefficient of static friction at A is s =...Ch. 17.5 - At this instant the center of gravity of the...Ch. 17.5 - Determine the initial angular acceleration of the...Ch. 17.5 - Determine the time before it starts to roll...Ch. 17.5 - If they are released from rest determine the...Ch. 17.5 - Determine the normal force which the path exerts...Ch. 17.5 - If it is originally at rest while being supported...Ch. 17.5 - If the pin support at A suddenly fails, determine...Ch. 17.5 - Determine its angular acceleration.Ch. 17.5 - If the coefficient of kinetic friction between the...Ch. 17.5 - Determine the normal reactions at each of the...Ch. 17.5 - Determine the internal axial force Ex, shear force...Ch. 17.5 - Determine the maximum acceleration it can have if...Ch. 17.5 - The roil rest against a wall for which the...Ch. 17.5 - Determine the magnitude of force F and the initial...Ch. 17.5 - Compute the reaction at the pin O just after the...Ch. 17.5 - if the coefficient of kinetic friction at the...Ch. 17.5 - The coefficient of kinetic friction is A = 0.3.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 6 - Part B 250 N The cart and its load have a total mass of 200 kg and center of mass at G. A force of P = 250 N is applied to the handle. Neglect the mass of the wheels. Determine the normal reactions at each of the two wheels at A and B. Also, find an acceleration of the cart. 1.2 m OB 0.3 m 0.4 m 0.6 m ΘΑ 0.5 marrow_forwardQ. The upper and lower arms of Porter governor are 0.25 m each and are pivoted 30 mm from the axis of rotation. The radius of rotation Is 130 mm. The mass of the ball and sleeve are 3 kg and 38 kg respectively. Find the effort and power of the governor.arrow_forwardThe force F 250 N is applied to a wheel weighing 20 kg and having a radius of inertia of 150 mm as shown in the figure. This force lifts a weight B of 10 kg. Calculate the angular acceleration of the pulley and the normal acceleration of the weight B, the tension of the rope and the reaction in the bearing of the pulley.arrow_forward
- The force F of 250 N is applied because a block with a mass of 20 kg and a radius of inertia of 160 mm as shown in the figure. This force lifts the weight B of 10 kg. Calculate the pulley angular acceleration and the normal acceleration of weight B, tension in the cable and reaction in the pulley bearing.arrow_forwardThe position of the small 0.68-kg blocks in the smooth radial slots in the disk which rotates about a vertical axis at O is used to activate a speed-control mechanism. If each block moves from r = 162 mm to r = 200 mm while the speed of the disk changes slowly from 272 rev/min to 382 rev/min, design the spring by calculating the spring constant k of each spring. The springs are attached to the inner ends of the slots and to the blocks.arrow_forwardShow all the work with diagrams pleasearrow_forward
- In a porter governor the mass of the central load is 18 kgand the mass of each ball is 2kg. the top arms (250+X) mm while the bottom arms are (300+X) mm long. The friction of the sleeve is 20 N. If the top arms make 45 deg with the axis of rotation in the equilibrium position, find the range of the speed of the governor in that position Note X is the student roll no. for example if the student roll no is A20 then X=20arrow_forwardThe 4.8 m I-beam has a mass of 900 kg and is held in the horizontal position by the pin at O and by the vertical cable which passes around the pulley at A and around the drum of the 200 kg motorized winch at B, as shown in Figure 8. If the winch motor has an output starting torque of 800 N.m, calculate the reaction forces at the pin O given the moment of inertia of the whole system including the winch, lo 7272 kg.m?. Treat the beam as a slender bar and the winch unit as a mass concentrated at the centre of the pulley.arrow_forwardThe frame is made from uniform rod which has a mass p per unit length. A smooth recessed slot constrains the small rollers at A and B to travel horizontally. Force P is applied to the frame through a cable attached to an adjustable collar C. Determine the magnitudes and directions of the normal forces which act on the rollers if (a) h = 0.25L, (b) h = 0.50L, and (c) h = 0.81L. The forces will be positive if up, negative if down. Evaluate your results for p = 2.5 kg/m, L = 510 mm, and P = 43 N. What is the acceleration of the frame in each case? Answers: (a) (b) L (c) h= 0.25L: h = 0.50L: h = 0.81L: L A A A = B i i i h P N. N. N₁ B i i i N. N. N. i i i m/s m/s m/sarrow_forward
- the uniform concrete pole has a mass of 25 tons and is slowly being lifted to a vertical position through the tension P in the cable. for position theta=60° calculate the tension T in the horizontal anchor cable 6 m 6 m 8 2m T Barrow_forwardA large symmetrical drum for drying sand is operated by the geared motor drive shown. If the mass of the sand is 710 kg and an average gear-tooth force of 2.75 kN is supplied by the motor pinion A to the drum gear normal to the contacting surfaces at B, calculate the average offset x¯ of the center of mass G of the sand from the vertical centerline. Neglect all friction in the supporting rollers.Assume r = 140 mm, R = 515 mm, θ= 25°.arrow_forwardPlease respond as reply as possible, USE THE DATA SHOWN IN THE TABLE. Distances are in centimeters The mechanism shown is used to carry out experimental tests on different industrial springs that are placed between the wall and point A. The rigid reinforcement that holds the spring at A moves through the horizontal beam by means of the 4 frictionless rollers. The piston CD is compressed by stretching the spring at A. For the situation in the position shown the spring is stretched a distance s and has an elongation constant of 2000N / m. The weight of the system can be considered negligible. Determine: 1.The magnitude of compressive force exerted by the piston at the position shown. 2.The magnitude of the force experienced by the bolt at E.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Introduction To Engg Mechanics - Newton's Laws of motion - Kinetics - Kinematics; Author: EzEd Channel;https://www.youtube.com/watch?v=ksmsp9OzAsI;License: Standard YouTube License, CC-BY