Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17.4, Problem 84P
Movement is controlled by the electromagnet E, which exerts a horizontal attractive force on the armature at B of FB = (0.2(10−3)l−a) N, where I in meters is the gap between the armature and the magnet at any instant. If the armature lies in the horizontal plane, and is originally at rest, determine the speed of the contact at B the instant l = 0.01 m. Orignially l = 0.02 m.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The horizontal force P = 8 − 2t lb (t is the time measured in seconds)is applied to the 5-lb collar that slides along the inclined rod. At time t = 0, the position coordinate of the collar is x = 0, and its velocity is v0 = 10 ft/s directed down the rod. Find the time and the speed of the collar when it returns to the position x = 0 for the first time. Neglect friction.
The position vector of a particle is given by r = 11ti + 2.0t²j - 0.9(t3 - 5)k, where t is the time in seconds from the start of the motion
and where r is expressed in meters. For the condition when t = 4 s, determine the power P developed by the force F = 36i - 21j - 46k N
which acts on the particle.
Answer: P = i
kW
The horizontal motion of the plunger and shaft is arrested by the resistance of the attached disk which moves through the oil bath. The velocity of the plunger is v0 = 3.8 m/s in the position A where x = 0 and t = 0, and the deceleration is proportional to v so that a = -kv where k = 0.61 s-1. Find (a) the velocity when t = 5.5 s, (b) the position x when t = 5.5 s, (c) the velocity when x = 3.5 m.
Chapter 17 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 17.1 - The rod's density end cross-sectional area. A are...Ch. 17.1 - Determine the mass of the cylinder end its moment...Ch. 17.1 - The nag has a mass m.Ch. 17.1 - Determine the radius of gyration kx. The density...Ch. 17.1 - The specific weight of the material is = 380...Ch. 17.1 - Determine the moment of inertia Iz and express the...Ch. 17.1 - Determine the moment of inertia Ix and express the...Ch. 17.1 - Defending the moment of inertia Iy and express the...Ch. 17.1 - Express the result in terms of the mass m of the...Ch. 17.1 - Determine me radius of gyration of the pendulum...
Ch. 17.1 - Determine the mass moment of inertia of the...Ch. 17.1 - Determine the moment of inertia of the solid steel...Ch. 17.1 - Determine the wheels moment of inertia about an...Ch. 17.1 - If the large ring, small ring and each of the...Ch. 17.1 - The thin plate has a hole in its center its...Ch. 17.1 - The material has a mass per unit area of 20 kg/m2.Ch. 17.1 - The block has a mass of 3 kg and the semicylinder...Ch. 17.1 - The block has a mass of 3 kg and the semicylinder...Ch. 17.1 - The material has a specific weight = 90 lb/ft3.Ch. 17.1 - Prob. 20PCh. 17.1 - Determine the location y of the center of mass G...Ch. 17.1 - The material is steel having a density of = 7.85...Ch. 17.1 - The material is steel having a density of = 7.85...Ch. 17.3 - Draw the free-body and kinetic diagrams of the...Ch. 17.3 - Draw the free-body and kinetic diagrams of the...Ch. 17.3 - Determine the acceleration of the can and the...Ch. 17.3 - If the 80-kg cabinet is allowed to roll down the...Ch. 17.3 - Determine the maximum acceleration of the frame...Ch. 17.3 - Also what is the corresponding normal reaction on...Ch. 17.3 - Determine the tension developed in the rods and...Ch. 17.3 - If it is subjected to a couple moment M = 450 N ...Ch. 17.3 - Determine how far the door moves in 25, starting...Ch. 17.3 - Determine the constant force F that must be...Ch. 17.3 - Initially at take-off the engines provide a thrust...Ch. 17.3 - If it starts from rest it causes the rear wheels...Ch. 17.3 - If the winch at B draws in the cable with an...Ch. 17.3 - Determine the greatest acceleration of the...Ch. 17.3 - Determine the internal axial, shear, and...Ch. 17.3 - If the coefficient of kinetic friction between the...Ch. 17.3 - Determine the reactions at both the wheels at A...Ch. 17.3 - Also, what is the acceleration of the cart? The...Ch. 17.3 - If it is subjected to a horizontal force of P =...Ch. 17.3 - Determine its initial acceleration if a man pushes...Ch. 17.3 - Determine the initial acceleration of a desk when...Ch. 17.3 - Determine the maximum force P that can be applied...Ch. 17.3 - Determine the maximum force P that can be applied...Ch. 17.3 - If it is released from rest, determine the...Ch. 17.3 - It is carried on a truck as shown. Determine the...Ch. 17.3 - It is carried on a truck as shown. If the truck...Ch. 17.3 - Determine the smallest acceleration that will...Ch. 17.3 - The coefficients of static and kinetic friction...Ch. 17.3 - If the collar is given a constant acceleration of...Ch. 17.3 - If it is supported by the cable AB and hinge at C,...Ch. 17.3 - If it is supported by the cable AB and hinge at C,...Ch. 17.3 - If the acceleration is a = 20 ft/s2, determine the...Ch. 17.3 - If h = 3 ft, determine the snowmobiles maximum...Ch. 17.3 - If the carts mass is 30 kg and it is subjected to...Ch. 17.3 - The uniform rod BC has a mass of 15 kg.Ch. 17.3 - If the acceleration of the truck is at = 0.5 m/s2,...Ch. 17.3 - If the angle = 30, determine the acceleration of...Ch. 17.3 - Determine the largest initial angular acceleration...Ch. 17.3 - Determine the initial friction and normal force of...Ch. 17.3 - Determine the largest initial angular acceleration...Ch. 17.3 - Determine the normal force NE, shear force VE, and...Ch. 17.4 - If the wheel starts from rest determine its...Ch. 17.4 - Determine the angular velocity of the disk when t...Ch. 17.4 - Determine the tangential and normal components of...Ch. 17.4 - Determine the tangential and normal components or...Ch. 17.4 - Determine the horizontal and vertical components...Ch. 17.4 - If the rod has a counterclockwise angular velocity...Ch. 17.4 - If the wheel is subjected to a moment M = (5t) N ...Ch. 17.4 - Determine its initial angular acceleration and the...Ch. 17.4 - If it is released from rest when = 0. determine...Ch. 17.4 - If it is released from rest in the position shown,...Ch. 17.4 - The reel rests on rollers at A and B and has a...Ch. 17.4 - The spring has a stiffness k = 5 lb ft/rad, so...Ch. 17.4 - The spring has a stiffness k = 5 lb ft/rad, so...Ch. 17.4 - If a force of F=(142)N, where is in radians, is...Ch. 17.4 - If no slipping occurs between them determine the...Ch. 17.4 - Show that IG may be eliminated by moving the...Ch. 17.4 - Treat the beam as a uniform slender rod.Ch. 17.4 - It consists of a 100-kg steel plate AC and a...Ch. 17.4 - It is pin supported at both ends by two brackets...Ch. 17.4 - It is pin supported at both ends by two brackets...Ch. 17.4 - Determine its angular velocity when t = 2 s...Ch. 17.4 - If it is placed on the ground for which the...Ch. 17.4 - Compute the time needed to unravel 5 m of cable...Ch. 17.4 - If the rotor always maintains a constant clockwise...Ch. 17.4 - It is originally spinning at = 40 rad/s. If it is...Ch. 17.4 - It is pin supported at both ends by two brackets...Ch. 17.4 - Disk E has a weight of 60 lb and is initially at...Ch. 17.4 - If the cylinders are released from rest, determine...Ch. 17.4 - If the pulley can be treated as a disk of mass 3...Ch. 17.4 - If the pulley can be treated as a disk of mass M,...Ch. 17.4 - Assume that the board is uniform and rigid, and...Ch. 17.4 - At the instant the rolor is horizontal it has an...Ch. 17.4 - Determine the initial tending moment at the fixed...Ch. 17.4 - Movement is controlled by the electromagnet E,...Ch. 17.4 - If it is rotating in the vertical plane at a...Ch. 17.4 - Determine the angular acceleration of the rod and...Ch. 17.4 - Determine the horizontal and vertical components...Ch. 17.4 - Determine the horizontal and vertical components...Ch. 17.5 - If the powder burns at a constant rate of 20 g/s...Ch. 17.5 - Determine the acceleration of the bars mass center...Ch. 17.5 - Determine the acceleration of its mass center and...Ch. 17.5 - When the wheel is subjected to the couple moment,...Ch. 17.5 - Determine the angular acceleration of the sphere...Ch. 17.5 - If the couple moment is applied to the spool and...Ch. 17.5 - If the rod is released from rest at = 0,...Ch. 17.5 - rolls without slipping, show that when moments are...Ch. 17.5 - If it is initially at rest and is subjected to a...Ch. 17.5 - The uniform 150-lb beam is initially at rest when...Ch. 17.5 - If the coefficients of static and kinetic friction...Ch. 17.5 - If the coefficients of static and kinetic friction...Ch. 17.5 - If the coefficients of static and kinetic friction...Ch. 17.5 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17.5 - If the coefficients of static and kinetic friction...Ch. 17.5 - If a horizontal force of F = 80 N is applied to...Ch. 17.5 - If slipping does not occur, determine the rings...Ch. 17.5 - Neglect the thickness of the ring.Ch. 17.5 - Using a collar of negligible mass, its end A is...Ch. 17.5 - If the pin is connected to a track which is giver...Ch. 17.5 - Assume the roller to be a uniform cylinder and...Ch. 17.5 - Also, find the angular acceleration of the roller....Ch. 17.5 - Determine the bars initial angular acceleration...Ch. 17.5 - Solve Prob.17-106 if the roller is removed and the...Ch. 17.5 - If the coefficient of static friction at A is s, =...Ch. 17.5 - If the truck has an acceleration of 3 m/s2...Ch. 17.5 - A cord is wrapped around the periphery of the disk...Ch. 17.5 - If the coefficient of static friction at A is s =...Ch. 17.5 - At this instant the center of gravity of the...Ch. 17.5 - Determine the initial angular acceleration of the...Ch. 17.5 - Determine the time before it starts to roll...Ch. 17.5 - If they are released from rest determine the...Ch. 17.5 - Determine the normal force which the path exerts...Ch. 17.5 - If it is originally at rest while being supported...Ch. 17.5 - If the pin support at A suddenly fails, determine...Ch. 17.5 - Determine its angular acceleration.Ch. 17.5 - If the coefficient of kinetic friction between the...Ch. 17.5 - Determine the normal reactions at each of the...Ch. 17.5 - Determine the internal axial force Ex, shear force...Ch. 17.5 - Determine the maximum acceleration it can have if...Ch. 17.5 - The roil rest against a wall for which the...Ch. 17.5 - Determine the magnitude of force F and the initial...Ch. 17.5 - Compute the reaction at the pin O just after the...Ch. 17.5 - if the coefficient of kinetic friction at the...Ch. 17.5 - The coefficient of kinetic friction is A = 0.3.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- the motor pulls on cable A with a force given by: F = 5 (30 + t ^ 2), where t is measured in seconds and F in N. if the 8.5kg box is initially at rest at t = 0, determine its speed for t = 4s. consider the mass of the pulley and the cables to be negligiblearrow_forwardThe small cylinder C has a mass of 10 kg and is attached to the end of a rod whose mass may be neglected. The frame is subjected to a couple of moment M = 26Nm, and the cylinder is subjected to a force of F = (5t² + 6) N, where t is in seconds, which is always directed in the same direction as the cylinder's velocity as shown. The cylinder has a speed vo= 2 m/s when t = 0. (Figure 1) Figure 0.75 m M 1 of 1 Part A Determine the speed of the cylinder when t = 3 s. Express your answer to three significant figures and include the appropriate units. v= |μA Value Submit Request Answer < Return to Assignment Units Provide Feedback ?arrow_forwardAt time t = 0 a small ball is projected from point A with a velocity of 287 ft/sec at the angle 63°. Neglect atmospheric resistance and determine the two times t₁ and t2 when the velocity of the ball makes an angle of 25° with the horizontal x-axis. A u = 287 ft/sec 63° Answers: t₂ = t₁ = i MO sec secarrow_forward
- The spring constants are k1 = 140N / m, k2 = 240N / m and the unstretched lengths of the springs are 0.3 m. If the 6 kg ring is released from rest from point A, calculate its velocity when it reaches point B. According to the given datum line, the total potential energy (Ve) at point A is A = 1116.86 J and the total elastic potential energy (Ve) at point B is B = 370.8 J. Neglect the dimensions of the bracelet. (L1 = 0.90 m, L2 = 1.80 m, h1 = 1.20 m and h2 = 2.40 m)arrow_forwardAt time t = 0, the position vector of a particle moving in the x-y plane is r = 5.17i m. By time t = 0.014 s, its position vector has become (5.27i + 0.53j) m. Determine the magnitude vay of its average velocity during this interval and the angle e made by the average velocity with the positive x-axis. Answers: i m/s Vav e = iarrow_forwardThe material hoist and the load have a total mass of 600 kg and the counterweight C has a mass of 100 kg. At a given instant, the hoist has an upward velocity of 3 m/sm/s and an acceleration of 1.4 m/s^2 Part A: Determine the power generated by the motor M at this instant if it operates with an efficiency of ϵ = 0.8.arrow_forward
- The 40-kg crate is being hoisted by the motor. If at this instant shown the velocity of point P on the cable is 4 m/s and the speed is increasing at 2 m/s2 * what is the power input supplied to the motor if its efficiency is £ = 0.75? Neglect the mass of pulley and cable Vp ↓P = 4 m/s A Question 1: The 40-kg crate is being hoisted by the motor. If at this instant shown the velocity of point P on the cable is 4 m/s and the speed is increasing at 2 m/s², what is the power input supplied to the motor if its efficiency is = 0.75? Neglect the mass of pulley and cable. (a) 0.649 kW (b) 0.865 kW (c) 1.15 kW (d) 1.53 kWarrow_forwardThe range R, or the maximum horizontal distance, of a projectile on level ground launched at an angle 8 above the horizontal with initial speed v is given by R = ² sin 20 Show the 9 derivation of this formula.arrow_forwardThe box having mass of m is being pulled by a motor. Initial velocity of the box is v0. Motor pulles the box by force F= 500s+550, where s is the distance the box is pulled (meters), and force is in newtons. Define the velocity and acceleration of the box as a function of distance ‘s’. If the motor has efficiency of ε = 0.65, power input required to be supplied by the motor as a function ofdistance.arrow_forward
- The forked rod is used to move the smooth 3 −lb particle around the horizontal path in the shape of a limaçon, r=(2+cosθ) ft. If θ=(0.5t^2) rad, where tt is in seconds, determine the force which the rod exerts on the particle at the instant t=1 st=1 s. The fork and path contact the particle on only one side.arrow_forwardThe 400-kg mine car is hoisted up the incline using the cable and motor M. For a short time, the force in the cable is F = (3500 t2) N, where t is in seconds. ( Figure 1) Figure 17 7/8 15 ₁ = 2 m/s 1 of 1 Part A If the car has an initial velocity v₁ = 2m/s at s = 0 and t = 0, determine the distance it moves up the plane when t = 3 s. Express your answer to three significant figures and include the appropriate units. 8 = Value Submit HÅ Provide Feedback Request Answer P Pearson wwwww Units ? Next >arrow_forwardhelp pleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY