Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 57Q
To determine
The aspect of the spectrum of a G2 star that one needs to concentrate on to find the luminosity class of the star given that some giant and supergiant stars are of the same spectral type.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
. The spectrum of Star A peaks at 700 nm. The spectrum of Star B peaks at 470 nm. We know
nothing about what stage of stellar evolution either of these stars are in. Which of the
following are true?
A. Star A has a higher luminosity than Star B.
B. Star B has a higher luminosity than Star A.
C. Star A is cooler than Star B.
D. Not enough information to comment on their luminosities.
E. B and C
F. C and D
How does one go about these questions?
"51 Pegasi" is the name of the first normal star (besides the Sun) around which a planet was discovered. It is in the constellation Pegasus the horse. Its parallax is measured to be 0.064 arcsec.
a. What is its distance from us?
b. The apparent brightness is 1.79 × 10-10 J/(s·m2 ). What is the luminosity? How does that compare with that of the Sun? Look up the temperature: how do
Chapter 17 Solutions
Universe: Stars And Galaxies
Ch. 17 - Prob. 1QCh. 17 - Prob. 2QCh. 17 - Prob. 3QCh. 17 - Prob. 4QCh. 17 - Prob. 5QCh. 17 - Prob. 6QCh. 17 - Prob. 7QCh. 17 - Prob. 8QCh. 17 - Prob. 9QCh. 17 - Prob. 10Q
Ch. 17 - Prob. 11QCh. 17 - Prob. 12QCh. 17 - Prob. 13QCh. 17 - Prob. 14QCh. 17 - Prob. 15QCh. 17 - Prob. 16QCh. 17 - Prob. 17QCh. 17 - Prob. 18QCh. 17 - Prob. 19QCh. 17 - Prob. 20QCh. 17 - Prob. 21QCh. 17 - Prob. 22QCh. 17 - Prob. 23QCh. 17 - Prob. 24QCh. 17 - Prob. 25QCh. 17 - Prob. 26QCh. 17 - Prob. 27QCh. 17 - Prob. 28QCh. 17 - Prob. 29QCh. 17 - Prob. 30QCh. 17 - Prob. 31QCh. 17 - Prob. 32QCh. 17 - Prob. 33QCh. 17 - Prob. 34QCh. 17 - Prob. 35QCh. 17 - Prob. 36QCh. 17 - Prob. 37QCh. 17 - Prob. 38QCh. 17 - Prob. 39QCh. 17 - Prob. 40QCh. 17 - Prob. 41QCh. 17 - Prob. 42QCh. 17 - Prob. 43QCh. 17 - Prob. 44QCh. 17 - Prob. 45QCh. 17 - Prob. 46QCh. 17 - Prob. 47QCh. 17 - Prob. 48QCh. 17 - Prob. 49QCh. 17 - Prob. 50QCh. 17 - Prob. 51QCh. 17 - Prob. 52QCh. 17 - Prob. 53QCh. 17 - Prob. 54QCh. 17 - Prob. 55QCh. 17 - Prob. 56QCh. 17 - Prob. 57QCh. 17 - Prob. 58QCh. 17 - Prob. 59QCh. 17 - Prob. 60QCh. 17 - Prob. 61QCh. 17 - Prob. 62QCh. 17 - Prob. 63QCh. 17 - Prob. 64QCh. 17 - Prob. 65QCh. 17 - Prob. 66QCh. 17 - Prob. 67QCh. 17 - Prob. 68QCh. 17 - Prob. 69QCh. 17 - Prob. 70QCh. 17 - Prob. 71QCh. 17 - Prob. 72QCh. 17 - Prob. 73QCh. 17 - Prob. 74QCh. 17 - Prob. 75QCh. 17 - Prob. 76QCh. 17 - Prob. 77QCh. 17 - Prob. 78QCh. 17 - Prob. 79QCh. 17 - Prob. 80Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1arrow_forwardA group of graduate students, bored during a cloudy night at a the observatory, begin to make bets about the time different stars will take to evolve. If they have a cluster of stars which were all born roughly the same time, and want to know which star will become a red giant first, which of the following stars should they bet on? a. a star that would type O on the main sequence star b. a star about 1/2 the mass of our sun c. a star about 8% the mass of our sun d. all stars reach the red giant stage in roughly the same number of yearsarrow_forwardChoose the statements that correctly describe the characteristics of the stars located in the labeled quadrants of the H-R diagram. Luminosityarrow_forwardA. Based on the graph, what is the approximate mean luminosity of a Cepheid variable star with a period of 5 days? 10 days?arrow_forwardThe spectral type of a star is directly related to its color. Recall that a star emits light as a blackbody, which has a particular shape to its spectrum, as shown in this figure. Based on this, what basic property of a star determines its color (and thus its spectral type)? Choose one: A. age B. composition C. radius D. temperaturearrow_forwardThe sketch below shows an H-R diagram for a star cluster. Consider the star to which the arrow points. How is it currently generating energy? Temperature A. by hydrogen shell burning around an inert helium core B. by gravitational contraction C. by core hydrogen fusion D.by core helium fusion combined with hydrogen shell burning E. by both hydrogen and helium shell burning around an inert carbon core Luminosity -→arrow_forwardYou see two variable stars. One has a period of half a day and the other has a period of 100 days. A)Which one is more luminous? B)What can you learn from knowing the intrinsic luminosity? – explain your answerarrow_forward12: A star with spectral type A0 has a surface temperature of 9600 K and a radius of 2.2 RSun. How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one) Answer: 36.854 13:This star has a mass of 3.3 MSun. what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr. Please answer question 13 thank you.arrow_forwardEach choice below lists a spectral type and luminosity class for a star. Which one is a hot main sequence star? OA. spectral type 09, luminosity class I O B. spectral type 01, luminosity class V O C. spectral type M2, luminosity class I OD. spectral type M2, luminosity class Varrow_forward12. A star with spectral type MO has a surface temperature of 3750 K and a radius of 0.63 Rsun: How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one) Answer: Submit All Answers Last Answer: 0.0923 Incorrect, tries 1/5. Hint: Use the Luminosity equation, which says that L is proportional to R^2 T^4. If you keep these as ratios compared to the sun, your L will also come out as a ratio compared to the Sun. This star has a mass of 0.4 Msun- Using the simple approximation that we made in class, what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr. Answer: Submit All Answers Compare this to the lifetime of a MO star listed in Table 22.1 (computed using a more sophisticated approach). Is the value you calculated in the previous problem longer or shorter than what is reported in the table? (L for longer, S for shorter) (You only get one try at this problem.) Answer: Submit All Answersarrow_forwardFor each statement concerning main sequence stars, select T True, F False, G Greater than, L Less than, or E Equal to. A) The surface temperature of a O type star is .... than a K type star. B) On the main sequence, the mass of a O type star is .... than a F type star. C) On the main sequence, a M type star's life is .... than a G type star. D) The surface temperature of our Sun is .... than the surface temperature of Sirius. E) When stars start hydrogen burning, thier mass determines where they are on the main sequence. F) Based on the relative lifes of M and G type stars we expect the number of M stars to be .... than the number of G type stars.arrow_forwardWhich of the following is wrong? A. Tidal effects in a binary star system become more important when one or both stars become giant stars. B. There is no fusion occurring in the core of a low-mass red giant star. C. Gold (the element) is produced during the supernova explosions of high-mass stars. D. Suppose the star Betelgeuse were to become a supernova tomorrow, we'd see by naked eyes a cloud of gas expanding away from the position where Betelgeuse used to be. Over a period of a few weeks, this cloud would fill a large part of our sky.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning