Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 12Q
To determine
The advantages and disadvantages of making parallax measurements from a satellite in a large solar orbit, provided the distance is the distance of Jupiter from the Sun, the distance of the most remote star that can be measured accurately, the volume of space covered when compared to the Earth-based observations, and the extra amount of stars that is expected to be contained in that volume.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate by how many times Betelgeuse is brighter than the Sun, if its parallax is 0.006 arcsec, and its apparent magnitude is m = +.5.
Can you first use the parallax to calculate the distance and then use the magnitude-distance formula to find the absolute magnitude of Betelgeuse and finally, compare it to the absolute magnitude of the Sun which is -26,74 because other experts used other methods and the answer was not correct.
Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)
Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of
the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in
m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)
Question 4 of 7
A Moving to another question will save this response.
1 6:59
&
backs
Chapter 17 Solutions
Universe: Stars And Galaxies
Ch. 17 - Prob. 1QCh. 17 - Prob. 2QCh. 17 - Prob. 3QCh. 17 - Prob. 4QCh. 17 - Prob. 5QCh. 17 - Prob. 6QCh. 17 - Prob. 7QCh. 17 - Prob. 8QCh. 17 - Prob. 9QCh. 17 - Prob. 10Q
Ch. 17 - Prob. 11QCh. 17 - Prob. 12QCh. 17 - Prob. 13QCh. 17 - Prob. 14QCh. 17 - Prob. 15QCh. 17 - Prob. 16QCh. 17 - Prob. 17QCh. 17 - Prob. 18QCh. 17 - Prob. 19QCh. 17 - Prob. 20QCh. 17 - Prob. 21QCh. 17 - Prob. 22QCh. 17 - Prob. 23QCh. 17 - Prob. 24QCh. 17 - Prob. 25QCh. 17 - Prob. 26QCh. 17 - Prob. 27QCh. 17 - Prob. 28QCh. 17 - Prob. 29QCh. 17 - Prob. 30QCh. 17 - Prob. 31QCh. 17 - Prob. 32QCh. 17 - Prob. 33QCh. 17 - Prob. 34QCh. 17 - Prob. 35QCh. 17 - Prob. 36QCh. 17 - Prob. 37QCh. 17 - Prob. 38QCh. 17 - Prob. 39QCh. 17 - Prob. 40QCh. 17 - Prob. 41QCh. 17 - Prob. 42QCh. 17 - Prob. 43QCh. 17 - Prob. 44QCh. 17 - Prob. 45QCh. 17 - Prob. 46QCh. 17 - Prob. 47QCh. 17 - Prob. 48QCh. 17 - Prob. 49QCh. 17 - Prob. 50QCh. 17 - Prob. 51QCh. 17 - Prob. 52QCh. 17 - Prob. 53QCh. 17 - Prob. 54QCh. 17 - Prob. 55QCh. 17 - Prob. 56QCh. 17 - Prob. 57QCh. 17 - Prob. 58QCh. 17 - Prob. 59QCh. 17 - Prob. 60QCh. 17 - Prob. 61QCh. 17 - Prob. 62QCh. 17 - Prob. 63QCh. 17 - Prob. 64QCh. 17 - Prob. 65QCh. 17 - Prob. 66QCh. 17 - Prob. 67QCh. 17 - Prob. 68QCh. 17 - Prob. 69QCh. 17 - Prob. 70QCh. 17 - Prob. 71QCh. 17 - Prob. 72QCh. 17 - Prob. 73QCh. 17 - Prob. 74QCh. 17 - Prob. 75QCh. 17 - Prob. 76QCh. 17 - Prob. 77QCh. 17 - Prob. 78QCh. 17 - Prob. 79QCh. 17 - Prob. 80Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A star has a period of P = 37 days. It has a radius of 5.7 times the radius of the sun. Calculate it's equatorial speed Vrot. Answer: Okm/s Om/s Check A star has a radius of 5.7 times the radius of the sun and a mass of 18 times the mass of the sun. It rotates at 0.7 of the critical speed W, the speed at which it's surface at the equator is actually in orbit. Recall Vrot is calculated at the equator and W= Vrot/Vorb Calculate it's period P. Answer: Odays Ohours Oseconds Checkarrow_forwardThe total intensity of light measured on earth, from an ecliptic binary, is plotted in the figure as a function of time (it's called a light curve). Careful measurements indicate that the intensities of the incident light from the stars corresponding to the minima are respectively 90 and 63 percent of the maximum intensity, Io. temperatures of two stars in an eclipsing binary are T1 and T2 (T1 > T2), and the corresponding radii (R1 > R2), respectively. received from both stars.Surface аге R1 and R2 Find the ratio T1/T2. Round you answer to two significant figures. 1.0- 0.8 1/1o =0.90 0.6- 04- 1|1. =0.63 0.2 1.0 2.0 3.0 4.0 5.0 6.0 Time (days)arrow_forwardThe Algol binary system consists of a 3.7 Msun star and a 0.8 Msun star with an orbital period of 2.87 days. Using Newton’s version of Kepler’s Third Law, calculate the distance, a, between the two stars. Compare that to the size of Betelgeuse (you’ll need to look that up). Newton’s Version of Kepler’s Law: (M1 + M2) P2 = (4p2 /G) a3 Rearrange the equation to solve for a. Pi, p, is equal to 3.14. IMPORTANT NOTE: Google the value of G (the Universal Gravitational Constant) or look it up in your text. NOTICE THE UNITS. You must convert every distance and time in your equation to the same units, otherwise, you’ll get an incorrect answer. That means you must convert distances to meters, solar masses to kilograms, and time to seconds. When you compare your value to the size of Betelgeuse, it will also help that they are in the same units.arrow_forward
- = 2000 K and a radius of R, A young recently formed planet has a surface temperature T Jupiter radii (where Jupiter's radius is 7 x 107 m). Calculate the luminosity of the planet and 2 determine the ratio of the planet's luminosity to that of the Sun.arrow_forwardA brand new telescope has been named after you. It is therefore only fitting that you get to make the very first set of observations. During your first night observing, you first measure the apparent brightness and spectrum of a group of stars that appear close to each other within the telescopes field of view. From a separate set of observations 6 months later, you are able to measure each star’s parallax. Next you plot the luminosity and temperature of each star in a Hertzsprung-Russell Diagram What features below help you conclude that the group of stars is a star cluster? Explain Approximately how old do you think this star cluster is? Explain How do you expect the spectrum of the most luminous and least luminous main sequence stars in the cluster to differ? Explain why these differences occur in terms of the star’s properties and any measured absorption lines. A year after your discovery, another new star cluster has been found by the same telescope, but its distance is too far…arrow_forwardA star has a measured radial velocity of 100 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 486.42 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.) Which spectral line does this likely correspond to? Balmer-alpha (656.3 nm) Balmer-beta (486.1 nm) Balmer-gamma (434.0 nm) Balmer-delta (410.2 nm)arrow_forward
- You measure a star to have a parallax angle of 0.12 arc-seconds What is the distance to this star in parsecs? 8.33 Hint: d = 1/p What is the parallax angle of a different star that is twice as far away as the star from the previous problems? [answer in arc-seconds without including the unit]arrow_forwardThe best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forwardAs seen from Earth, the Sun has an apparent magnitude of about 26.7 . What is the apparent magnitude of the Sun as seen from Saturn, about 10 AU away? (Remember that one AU is the distance from Earth to the Sun and that the brightness decreases as the inverse square of the distance.) Would the Sun still be the brightest star in the sky?arrow_forward
- Gaia will have greatly improved precision over the measurements of Hipparcos. The average uncertainty for most Gaia parallaxes will be about 50 microarcsec, or 0.00005 arcsec. How many times better than Hipparcos (see Exercise 19.32) is this precision?arrow_forwardWhy was the Hipparcos satellite able to make more accurate parallax measurements than ground-based telescopes?arrow_forwardWhy do you think astronomers have suggested three different spectral types (L, T, and Y) for the brown dwarfs instead of M? Why was one not enough?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning