Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 33Q
To determine
(a)
The reason why given equation is correct.
To determine
(b)
The color indices for the Sun, Bellatrix and Betelgeuse.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The origin of the above quote (with "flame" or "candle" sometimes substituted for "light") is unclear. It is often attributed to either Lao Tzu or to the character Eldon Tyrell from the 1982 movie Blade Runner.
Stars follow a similar law, although the factor isn't precisely 1/2. In this problem, you will figure out the precise factor that the quote should have to apply to stars.
Using the proportionality relationships for stellar luminosity as a function of mass and stellar lifetime as a function of mass, combine the two equations to arrive at a proportionality for stellar lifetime as a function of luminosity.
Consider a star with luminosity twice that of the Sun's. Compute the star's main sequence lifetime as a multiple of the Sun's main sequence lifetime. Enter your result below as a decimal. For example, if you found TT⊙=0.3, enter "0.3". (Here T is the star's lifetime and T⊙ is the Sun's main sequence lifetime.
The Hα spectral line has a rest wavelength of 6562.8 ˚A (remember: 1 ˚A = 10−10 m). In star A, the lineis seen at 6568.4 ˚A, in star B it’s seen at 6560.3 ˚A, and in star C it’s seen at 6562.8 ˚A. Which star ismoving the fastest (along the line of sight) and what is the radial velocity of each star?
A star has a measured radial velocity of 100 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 486.42 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.)
Which spectral line does this likely correspond to?
Balmer-alpha (656.3 nm)
Balmer-beta (486.1 nm)
Balmer-gamma (434.0 nm)
Balmer-delta (410.2 nm)
Chapter 17 Solutions
Universe: Stars And Galaxies
Ch. 17 - Prob. 1QCh. 17 - Prob. 2QCh. 17 - Prob. 3QCh. 17 - Prob. 4QCh. 17 - Prob. 5QCh. 17 - Prob. 6QCh. 17 - Prob. 7QCh. 17 - Prob. 8QCh. 17 - Prob. 9QCh. 17 - Prob. 10Q
Ch. 17 - Prob. 11QCh. 17 - Prob. 12QCh. 17 - Prob. 13QCh. 17 - Prob. 14QCh. 17 - Prob. 15QCh. 17 - Prob. 16QCh. 17 - Prob. 17QCh. 17 - Prob. 18QCh. 17 - Prob. 19QCh. 17 - Prob. 20QCh. 17 - Prob. 21QCh. 17 - Prob. 22QCh. 17 - Prob. 23QCh. 17 - Prob. 24QCh. 17 - Prob. 25QCh. 17 - Prob. 26QCh. 17 - Prob. 27QCh. 17 - Prob. 28QCh. 17 - Prob. 29QCh. 17 - Prob. 30QCh. 17 - Prob. 31QCh. 17 - Prob. 32QCh. 17 - Prob. 33QCh. 17 - Prob. 34QCh. 17 - Prob. 35QCh. 17 - Prob. 36QCh. 17 - Prob. 37QCh. 17 - Prob. 38QCh. 17 - Prob. 39QCh. 17 - Prob. 40QCh. 17 - Prob. 41QCh. 17 - Prob. 42QCh. 17 - Prob. 43QCh. 17 - Prob. 44QCh. 17 - Prob. 45QCh. 17 - Prob. 46QCh. 17 - Prob. 47QCh. 17 - Prob. 48QCh. 17 - Prob. 49QCh. 17 - Prob. 50QCh. 17 - Prob. 51QCh. 17 - Prob. 52QCh. 17 - Prob. 53QCh. 17 - Prob. 54QCh. 17 - Prob. 55QCh. 17 - Prob. 56QCh. 17 - Prob. 57QCh. 17 - Prob. 58QCh. 17 - Prob. 59QCh. 17 - Prob. 60QCh. 17 - Prob. 61QCh. 17 - Prob. 62QCh. 17 - Prob. 63QCh. 17 - Prob. 64QCh. 17 - Prob. 65QCh. 17 - Prob. 66QCh. 17 - Prob. 67QCh. 17 - Prob. 68QCh. 17 - Prob. 69QCh. 17 - Prob. 70QCh. 17 - Prob. 71QCh. 17 - Prob. 72QCh. 17 - Prob. 73QCh. 17 - Prob. 74QCh. 17 - Prob. 75QCh. 17 - Prob. 76QCh. 17 - Prob. 77QCh. 17 - Prob. 78QCh. 17 - Prob. 79QCh. 17 - Prob. 80Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Physics written by hand.arrow_forwardA star has a measured radial velocity of 300 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 657.18 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.) nm Which spectral line does this likely correspond to? Balmer-alpha (656.3 nm) Balmer-beta (486.1 nm) Balmer-gamma (434.0 nm) Balmer-del ta (410.2 nm)arrow_forwardTwo stars (a and b) in a binary system have apparent V-band magnitudes of 8.0 and 8.4 mag, and B-V colour indices of 0.3 and -0.5 mag, respectively. (a) Which star is brightest in the V-band? (b) Which star is brightest in the B-band? (c) Which star would appeal bluer to the naked eye? (d) What is the ratio of monochromatic fluxes of the stars in the B-band? (e) What is the total apparent magnitude of the system in the V-band (assuming it is unresolved)?arrow_forward
- How does one go about these questions?arrow_forwardThe figure below shows the spectra of two stars on the same scale (Star A = red line; Star B = green line). The three strongest (deepest) absorption lines in each spectrum are due to the same element (they are marked with arrows in the Star A spectrum). How does the radial velocity of Star B compare to the radial velocity of Star A? (Choose the most correct answer; assume both spectra were taken from Earth.) Normalized flux 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 882 882.5 883 883.5 884 Star A Star B 884.5 885 Wavelength (nm) Star B is moving away from the Earth faster than Star A. Star A and Star B are both moving away from the Earth with the same radial velocity. Star B is moving towards the Earth faster than Star A. Star A and Star B are both moving towards the Earth with the same radial velocity.arrow_forwardTwo stars are identified on the Hertzsprung-Russell diagram below. Hertzsprung-Russell Diagram Temperature (K) 40,000 20,00010,000 7,500 5,500 4,500 3,000 10 10 10 www 10 10 B. G K M Spectral Class Based on this diagram, how do the characteristics of Star 1 and Star 2 compare? Star 1 is cooler and less bright than Star 2. O Star 1 is hotter and brighter than Star 2. O Star 1 is cooler and brighter than Star 2. O Star 1 is hotter and less bright than Star 2. O Aisoujunarrow_forward
- A star has a parallax angle of 0.0270 arcseconds and an apparent magnitude of 4.641. The distance to this star is 37.03 parsecs and the absolute magintude is 1.79. 18: What is the luminosity of this star? (HINT: The luminosity of the Sun is 3.85×1026 W.) Using the Forumla M1 - M2 = -2.5 log(L1/L2) the absolute magnitude of the Sun is 4.8arrow_forwardThe temperature of a star can be determined from Amax, the wavelength of radiation that the star emits most intensely. The wavelength, λmax, is given for several stars in the table below. Star Antares λmax 934 nm Canopus 397 nm Regulus 223 nm The Sun 502 nm Vega 311 nm Based on their most intensely emitted wavelengths as presented in the table in the problem statement, rank the following stars in order of increasing surface temperature Antares Canopus Regulus The Sun Vega Increasing Surface Temperaturearrow_forwardLet us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)arrow_forward
- Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer) Question 4 of 7 A Moving to another question will save this response. 1 6:59 & backsarrow_forwardA brand new telescope has been named after you. It is therefore only fitting that you get to make the very first set of observations. During your first night observing, you first measure the apparent brightness and spectrum of a group of stars that appear close to each other within the telescopes field of view. From a separate set of observations 6 months later, you are able to measure each star’s parallax. Next you plot the luminosity and temperature of each star in a Hertzsprung-Russell Diagram What features below help you conclude that the group of stars is a star cluster? Explain Approximately how old do you think this star cluster is? Explain How do you expect the spectrum of the most luminous and least luminous main sequence stars in the cluster to differ? Explain why these differences occur in terms of the star’s properties and any measured absorption lines. A year after your discovery, another new star cluster has been found by the same telescope, but its distance is too far…arrow_forwardYou observe a star with a telescope over the course of a year. You find that this star has a flux that is one-trillionth of the Sun's flux. You also observe a parallax shift for this star of 0.042 arcseconds. What is the luminosity of this star as a multiple of the Sun's luminosity L⊙. [Hint: use the flux formula in the form of a ratio, along with one other formula. Express your answer as a multiple of the Sun's luminosity---e.g., 150 L⊙---entering only that multiple (e.g., you would enter 150).]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning