Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 30Q
To determine
The star which is brighter.
The amount by which brighter star is more luminous than the dimmer star.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
15: A star has a parallax angle of 0.0270 arcseconds and an apparent magnitude of 4.641. What is the distance to this star? Answer: 37
16: What is the absolute magnitude of this star? Answer:1.8
17: Is this star more or less luminous than the Sun? Answer "M" for More luminous or "L" for Less luminous. (HINT: the absolute magnitude of the Sun is 4.8) Answer: M
18: What is the luminosity of this star? (HINT: The luminosity of the Sun is 3.85×1026 W.)
Please answer question #18, #15-17 are correct, the photos provide the work for them.
Suppose a star has a luminosity of 7.0x1026 watts and an apparent brightness of 4.0×10-12 watt/m?. How far away is it? Give your answer in both kilometers and light-years.
Consider two identical stars, A and B. Star B is 10 times farther away than star A. What is the difference
in magnitudes between the two stars?
Chapter 17 Solutions
Universe: Stars And Galaxies
Ch. 17 - Prob. 1QCh. 17 - Prob. 2QCh. 17 - Prob. 3QCh. 17 - Prob. 4QCh. 17 - Prob. 5QCh. 17 - Prob. 6QCh. 17 - Prob. 7QCh. 17 - Prob. 8QCh. 17 - Prob. 9QCh. 17 - Prob. 10Q
Ch. 17 - Prob. 11QCh. 17 - Prob. 12QCh. 17 - Prob. 13QCh. 17 - Prob. 14QCh. 17 - Prob. 15QCh. 17 - Prob. 16QCh. 17 - Prob. 17QCh. 17 - Prob. 18QCh. 17 - Prob. 19QCh. 17 - Prob. 20QCh. 17 - Prob. 21QCh. 17 - Prob. 22QCh. 17 - Prob. 23QCh. 17 - Prob. 24QCh. 17 - Prob. 25QCh. 17 - Prob. 26QCh. 17 - Prob. 27QCh. 17 - Prob. 28QCh. 17 - Prob. 29QCh. 17 - Prob. 30QCh. 17 - Prob. 31QCh. 17 - Prob. 32QCh. 17 - Prob. 33QCh. 17 - Prob. 34QCh. 17 - Prob. 35QCh. 17 - Prob. 36QCh. 17 - Prob. 37QCh. 17 - Prob. 38QCh. 17 - Prob. 39QCh. 17 - Prob. 40QCh. 17 - Prob. 41QCh. 17 - Prob. 42QCh. 17 - Prob. 43QCh. 17 - Prob. 44QCh. 17 - Prob. 45QCh. 17 - Prob. 46QCh. 17 - Prob. 47QCh. 17 - Prob. 48QCh. 17 - Prob. 49QCh. 17 - Prob. 50QCh. 17 - Prob. 51QCh. 17 - Prob. 52QCh. 17 - Prob. 53QCh. 17 - Prob. 54QCh. 17 - Prob. 55QCh. 17 - Prob. 56QCh. 17 - Prob. 57QCh. 17 - Prob. 58QCh. 17 - Prob. 59QCh. 17 - Prob. 60QCh. 17 - Prob. 61QCh. 17 - Prob. 62QCh. 17 - Prob. 63QCh. 17 - Prob. 64QCh. 17 - Prob. 65QCh. 17 - Prob. 66QCh. 17 - Prob. 67QCh. 17 - Prob. 68QCh. 17 - Prob. 69QCh. 17 - Prob. 70QCh. 17 - Prob. 71QCh. 17 - Prob. 72QCh. 17 - Prob. 73QCh. 17 - Prob. 74QCh. 17 - Prob. 75QCh. 17 - Prob. 76QCh. 17 - Prob. 77QCh. 17 - Prob. 78QCh. 17 - Prob. 79QCh. 17 - Prob. 80Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Review this spectral data for five stars. Which is the hottest? Coolest? Most luminous? Least luminous? In each case, give your reasoning.arrow_forwardStar 1 and star 2 have the same V-magnitude, V = 7.5. However, they have different B-magnitudes, B1 = 7.2 and B2 = 8.5. What are the (B − V) colors of the two stars?arrow_forwardYou measure a star to have a parallax angle of 0.12 arc-seconds. What fraction of a degree is this? By how many times would you have to magnify this effect for it to be visible to the human eye? (The limit of human vision is about 1 arc-minute) What is the distance to this star in parsecs? What is the distance to this star in light years What is the parallax angle of a different star that is twice as far away as the star from the previous problems? [answer in arc-seconds without including the unit]arrow_forward
- Which of the following is a true statement? A smaller diameter star can never have a smaller number for its apparent magnitude than a larger star. Two stars with the same diameter and effective surface temperature will necessarily have the same absolute magnitude as well. Aristotle was the first person to detect stellar parallax. All G2 stars necessarily have the same absolute magnitude.arrow_forwardStar A has an apparent magnitude of –1.5 and is 12.6 light-years from Earth. Star B has an apparent magnitude of 0.4 and is 15.6 light-years from Earth. Why should apparent magnitude NOT be used to determine which star is brighter? What information could help you determine which star is brighter?arrow_forwardA certain star is 13.7 times dimmer than a star with apparent magnitude m = 3.9. What is the apparent magnitude of the dimmer star?arrow_forward
- A star is observed to cross the meridian at an elevation of 67°, as seen from an observatory at a latitude of 52° north. What is the declination of the star? What would be the declination of a star observed to transit at an elevation of 20°?arrow_forwardThe luminosity of a star is 6.6 x 1031 W and the peak wavelength in its spectrum is 4.6 x 10-7 m. Calculate the surface area of that star. Round off the answer to 2 decimal places with scientific representation.arrow_forwardStars A and B both have the same spectral class. Star A is 7 times farther away than star B. The brightness of star A will be ________ times dimmer than B. (Give a number.)arrow_forward
- A first-magnitude star is 100 times brighter than a sixth-magnitude star, which means each difference in magnitude represents a brightness change of 2.51 times. Compare the brightness of a star with an apparent magnitude (m) of −2.1 to a star with an apparent magnitude of +2.9.A first-magnitude star is 100 times brighter than a sixth-magnitude star, which means each difference in magnitude represents a brightness change of 2.51 times. Bchange ≈arrow_forwardIf a star has a surface temperature of 3000 K but a luminosity 150 times greater than our Sun, what size is this star? Give your answer in units of the solar radius, R.arrow_forwardUse a diagram to explain what is meant by the parallax angle, p, for a star observed twice from Earth, with a 6-month interval between each observation. Hence define the parsec, and calculate its value in astronomical units and metres. The star Betelgeuse is observed to have a parallax angle p = 4.5 × 10−3 arcseconds. State the distance of Betelgeuse in units of parsecs and light years.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax