Introduction To General, Organic, And Biochemistry
Introduction To General, Organic, And Biochemistry
12th Edition
ISBN: 9781337571357
Author: Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher: Cengage Learning
Question
Book Icon
Chapter 17, Problem 50P

(a)

Interpretation Introduction

Interpretation : The chiral TCA-cycle intermediates need to be identified. The intermediate with greatest number of chiral centers and cis-trans isomerism needs to be determined.

Concept Introduction : A chiral carbon atom is the carbon atom which is bonded with four different atoms or group of atoms. The geometrical isomers are due to the presence of C=C bond in the molecule in which the double bonded carbon atoms must be bonded with two different groups. Oxidation and decarboxylation are two most important chemical reactions.

(b)

Interpretation Introduction

Interpretation : The type of chemical reaction taking place in step 1 to 3 needs to be determined.

Concept Introduction : A chiral carbon atom is the carbon atom which is bonded with four different atoms or group of atoms. The geometrical isomers are due to the presence of C=C bond in the molecule in which the double bonded carbon atoms must be bonded with two different groups. Oxidation and decarboxylation are two most important chemical reactions.

(c)

Interpretation Introduction

Interpretation : The product of hydration of aconitic acid needs to be determined if it follows Markovnikov’s rule.

Concept Introduction : A chiral carbon atom is the carbon atom which is bonded with four different atoms or group of atoms. The geometrical isomers are due to the presence of C=C bond in the molecule in which the double bonded carbon atoms must be bonded with two different groups. Oxidation and decarboxylation are two most important chemical reactions.

(d)

Interpretation Introduction

Interpretation : The type of reactions taking place in step 4 to 8 needs to be determined.

Concept Introduction : A chiral carbon atom is the carbon atom which is bonded with four different atoms or group of atoms. The geometrical isomers are due to the presence of C=C bond in the molecule in which the double bonded carbon atoms must be bonded with two different groups. Oxidation and decarboxylation are two most important chemical reactions.

(e)

Interpretation Introduction

Interpretation : This is to be shown that step 5 involves oxidation.

Concept Introduction : A chiral carbon atom is the carbon atom which is bonded with four different atoms or group of atoms. The geometrical isomers are due to the presence of C=C bond in the molecule in which the double bonded carbon atoms must be bonded with two different groups. Oxidation and decarboxylation are two most important chemical reactions.

(f)

Interpretation Introduction

Interpretation : This is given that reaction 4 is also classified as a decarboxylation. Whether this decarboxylation involves oxidation reaction or not needs to be determined.

Concept Introduction : A chiral carbon atom is the carbon atom which is bonded with four different atoms or group of atoms. The geometrical isomers are due to the presence of C=C bond in the molecule in which the double bonded carbon atoms must be bonded with two different groups. Oxidation and decarboxylation are two most important chemical reactions.

Blurred answer
Students have asked these similar questions
The hydrolysis of pyrophosphate to orthophosphate drives biosynthetic reactions such as DNA synthesis. In Escherichia coli, a pyrophosphatase catalyzes this hydrolytic reaction. The pyrophosphatase has a mass of 120 kDa and consists of six identical subunits. A unit of activity for this enzyme, U, is the amount of enzyme that hydrolyzes 10 umol of pyrophosphate in 15 minutes. The purified enzyme has a Vnax of 2800 U per milligram of enzyme. When (S] >> KM, how many micromoles of substrate can 1 mg of enzyme hydrolyze per second? Vnax = umol -s. mg- If cach enzyme subunit has one active site, how many micromoles of active sites, or (E]r, are there in 1 mg of enzyme? (Er = umol - mg-
Match the following enzyme actions with the name of the enzyme Catalyzes the addition of two groups to a double bond, or the removal of two groups to form a double bond Choose. Choose. Transferases Catalyzes oxidation/reduction reactions Hydrolases Catalyzes isomerization reactions somerases Oxidoreductases Catalyzes group transfer reactions Ligases Lyases Catalyzes the joining together of two molecules Choose. Catalyzes hydrolysis reactions Choose...
Match each enzyme class to the type of reactions catalyzed. Enzyme Class [11][ Type of Reactions Catalyzed reactions involving the transfer of a functional group from one molecule to another energetically unfavorable reactions that require ATP to form new bonds oxidation-reduction reactions reactions that eliminate or form a double bond hydrolysis reactions isomerization reactions hydrolase Answer Bank transferase ligase lyase isomerase oxidoreductase

Chapter 17 Solutions

Introduction To General, Organic, And Biochemistry

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning