a.
To find: The function
The function that models the cost of producing
Given information:
The cost of making each unstrung racket is $23 and total of $125000 in fixed overhead costs.
Calculation:
Multiply the number of rackets with the price of each unstrung racket and add fixed overhead costs to get the function that models the cost of producing unstrung rackets as follows:
Conclusion:
The function that models the cost of producing
b.
To find: The function
The function that models the cost of producing
Given information:
The cost of making each unstrung racket is $23 and total of $125000 in fixed overhead costs.
Calculation:
Multiply the number of rackets with the price of each strung racket and add fixed overhead costs to get the function that models the cost of producing unstrung rackets as follows:
Conclusion:
The function that models the cost of producing
c.
To find: The function
The function modelling the revenue generated by selling
Given information:
The cost of making each unstrung racket is $23 and total of $125000 in fixed overhead costs.
The price of an unstrung racket is $56 and the price of a strung racket is $79.
Calculation:
The selling price of one unstrung racket is $56. So, the selling price of
Therefore, the function modelling the revenue generated by selling
Conclusion:
The revenue function is
d.
To find: The function
The function modelling the revenue generated by selling
Given information:
The cost of making each unstrung racket is $23 and total of $125000 in fixed overhead costs.
The price of an unstrung racket is $56 and the price of a strung racket is $79.
Calculation:
The selling price of one unstrung racket is $79. So, the selling price of
Therefore, the function modelling the revenue generated by selling
Conclusion:
The revenue function is
e.
To graph: The functions
Given information:
The cost of making each unstrung racket is $23 and total of $125000 in fixed overhead costs.
The price of an unstrung racket is $56 and the price of a strung racket is $79.
Graph:
Use a graphing tool to draw the graph of the functions as shown below.
Interpretation:
Selling strung rackets generates more revenue than selling unstrung rackets.
f.
To write: whether the company should manufacture unstrung or strung rackets.
The company should manufacture strung rackets.
Given information:
The cost of making each unstrung racket is $23 and total of $125000 in fixed overhead costs.
The price of an unstrung racket is $56 and the price of a strung racket is $79.
Calculation:
Consider the graph drawn in part (e).
From the graph it can be observed that the revenue generated by selling strung rackets is more than revenue generated by unstrung rackets. Thus, it is recommended to manufacture strung rackets.
Conclusion:
Selling strung rackets generates more revenue than selling unstrung rackets.
Chapter 1 Solutions
Precalculus: Graphical, Numerical, Algebraic Common Core 10th Edition
- mv2 The centripetal force of an object of mass m is given by F (r) = rotation and r is the distance from the center of rotation. ' where v is the speed of r a. Find the rate of change of centripetal force with respect to the distance from the center of rotation. F(r) b. Find the rate of change of centripetal force of an object with mass 500 kilograms, velocity of 13.86 m/s, and a distance from the center of rotation of 300 meters. Round to 2 decimal places. N/m (or kg/s²) F' (300)arrow_forwardSolve work shown please and thanks!arrow_forwardGiven the following graph of the function y = f(x) and n = = 6, answer the following questions about the area under the curve from x graph to enlarge it.) 1 (Round your answer to within two decimal places if necessary, but do not round until your final computation.) a. Use the Trapezoidal Rule to estimate the area. Estimate: T6 G b. Use Simpson's Rule to estimate the area. Estimate: S6 - ID = 0 to x = 6. (Click on aarrow_forward
- "Solve the following differential equation using the Operator Method and the Determinant Method:" Solve by dr no ai """'+3y"" + 3y+y=arrow_forward(4,4) M -4 2 2 -4 (-4,-4) 4 8 10 12 (8,-4) (12,-4) Graph of f The figure shows the graph of a piecewise-linear function f. For −4≤x≤12, the function g is x defined by g(x) = √ƒ (t)dt . . Find the value of g(6). Find the value of g'(6). |arrow_forwardPREVIOUS ANSWERS ASK YOUR TEACHER PRACTICE ANOTHER Find the derivative of the function. f'(x) = X x + √3x f(x) = 3x-5 (3√√3x+11√√x+5√3 2√√x (3x-5)² Need Help? Read It SUBMIT ANSWERarrow_forward
- PREVIOUS ANSWERS ASK YOUR TEACHER PRACTICE A Find the derivative of the function and evaluate f'(x) at the given val f(x) = (√√√x + 3x) (x3/2 - x); x = 1 f'(x) = 9x 412 (12x (13) 2 - 4x-3√√√x f'(1) = 2 Need Help? Read It Watch It SUBMIT ANSWERarrow_forwardConsider the following functions. g(x) = x + √3x h(x) = 3x-5 x + √3x f(x) = = 3x-5 Find the derivative of each function. g'(x) h'(x) = = f'(x) = 3 = +1 2√3x 3 (3√3x + 10√√x +5√√√3 2√√x (3x-5)² Need Help? Read It SUBMIT ANSWERarrow_forward"Solve the following differential equation using the Operator Method and the Determinant Method:" y'''' + 3y'"' + 3y'' + y = xarrow_forward
- practice for exam please helparrow_forwardFig. 4.22. Problems 4.1 (A). Determine the second moments of area about the axes XX for the sections shown in Fig. 4.23. [15.69, 7.88, 41.15, 24; all x 10-6 m. All dimensions in mm IAA inn 100 25 50 25 50 80 50 50 Fig. 4.23. X 80 60arrow_forward4.3 (A). A conveyor beam has the cross-section shown in Fig. 4.24 and it is subjected to a bending moment in the plane YY. Determine the maximum permissible bending moment which can be applied to the beam (a) for bottom flange in tension, and (b) for bottom flange in compression, if the safe stresses for the material in tension and compression are 30 MN/m² and 150 MN/m² respectively. Y [32.3, 84.8 kNm.] 150 100 50 -25 +50-50-50-50- All dimensions in mmarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





