Concept explainers
Introduction:
Bacterial recombination is a type of genetic recombination in that bacterial DNA (deoxyribonucleic acid) is transferred from one bacterial cell (donor) to another bacterium (recipient) to generate genetic variability. This process takes place mainly in three ways, which are transformation, transduction, and conjugation.
Answer to Problem 1TYK
Correct answer:
The differences in the genes of bacteria can be studied by measuring the passage of genes between cells during conjugation, transduction, and transformation.
Explanation of Solution
Justification/explanation for the correct answer:
Option (e) states that the differences in genes of bacteria can be measured by the flow of genes between cells during conjugation, transduction, and transformation. The transfer of genetic information between individuals in recombination can be measured from the existence of recombinants produced from the genetic recombination. The time and order of the genes can be noted down that were transferred to the recombinants. Then, the genes can be mapped and assign in their particular positions. This can be done majorly in conjugation. Hence, option (e) is correct.
Explanation for the incorrect answer:
Option (a) states that the bacteria cannot be grown on minimal media as the media lacks essential nutrients while studying the differences in bacterial genes. The differences in the genes of the bacteria can also be studied by growing bacteria on a minimal medium for screening recombinants or conjugants. The recombinants can be differentiated from the nonrecombinants by growing them on different media, which favors them. So, it is an incorrect option.
Option (b) states that the bacterial clone, which is a group of cells from different bacteria of varying genetic make-up can be used to study the differences in bacterial genes. The passage of genes between the cells can be studied through different recombination processes. The genes in recombinants can be studied using bacterial clone, which are genetically identical cells of the same bacteria. So, it is an incorrect option.
Option (c) states that the bacterial diploid is used because of their ability to grow on minimal medium, for studying the differences in genes. Bacteria becomes partial diploid (merozygote) when recombination takes place. These are then grown on minimal media for differentiating them from nonrecombinants and to study the differences in the genes of bacteria. So, it is an incorrect option.
Option (d) states that only one genetic trait can be studied in a single recombinant event. The recipient cell or the recombinant can be tested for the presence of multiple genetic traits (multiple donor alleles) in a single recombinant event. So, it is an incorrect option.
Hence, options (a), (b), (c), and (d) are incorrect.
Therefore, it can be concluded that the differences in the genes of bacteria can be studied by measuring the passage of genes between the cells during conjugation, transduction, and transformation with the help of horizontal gene transfer determinations.
Want to see more full solutions like this?
Chapter 17 Solutions
Biology: The Dynamic Science (MindTap Course List)
- What are intrinsically disordered proteins, and how might they be useful for a living system?arrow_forwardWhat are Amyloid Fibrils? What biological functions are these known to perform?arrow_forwardHow do histamine and prostaglandins help in the mobilization of leukocytes to an injury site? What are chemotactic factors? How do they affect inflammation process?arrow_forward
- Compare and contrast neutrophils and macrophages. Describe two ways they are different and two ways they are similar.arrow_forwardDescribe the effects of three cytokines (not involved in the initial inflammation response). What cells release them?arrow_forwardDescribe activation of helper T cells or cytotoxic T cellsarrow_forward
- Compare and contrast MHC 1 and MHC 2. Describe two way they are different and two ways they similar including how they are used in antigen presentation.arrow_forwardDescribe two antimicrobial properties of the skin.arrow_forwardDescribe how the inflammation response starts including the sentinel cells and the chemicals involved. How do pathogens trigger the response particularly in the skin?arrow_forward
- How does complement promote the immune response? Describe three waysarrow_forwardWhich of the following is not a possible mechanism for autoimmunity? Select one: A. Abnormal expression of MHC II molecules in non-antigen-presenting cells B. Activation of polyclonal B cells C. Polymorphism of HLA alleles D. Molecular mimicry E. Release of sequestered antigensarrow_forwardWRITTEN WORK 3: NON-MENDELIAN GENETICS Part A: Complete the Punnett square and calculate for the probability of genotype and phenotype. i i Genotype: Phenotype: 08:55arrow_forward
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education