Concept explainers
Disks A and B are made of the same material, are of the same thickness, and can rotate freely about the vertical shaft. Disk B is at rest when it is dropped onto disk A, which is rotating with an angular velocity of 500 rpm. Knowing that disk A has a mass of 8 kg, determine (a) the final angular velocity of the disks, (b) the change in kinetic energy of the system.
Fig. P17.143
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
VECTOR MECH. FOR EGR: STATS & DYNAM (LL
Additional Engineering Textbook Solutions
Statics and Mechanics of Materials (5th Edition)
Fluid Mechanics Fundamentals And Applications
Engineering Mechanics: Statics
Foundations of Materials Science and Engineering
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Heating Ventilating and Air Conditioning: Analysis and Design
- 0.54 m -1.08 m- Fig. P16.61 Fig. P16.60 16.62 Two uniform cylinders, each of mass 7 kg and radius r= 125 mm. are connected by a belt as shown. If the system is released from rest. determine (a) the angular acceleration of each cylinder, (b) the tension in the portion of belt connecting the two cylinders, (c) the velocity of the center of the cylinder A after it has moved through I m. Fig. P16.62arrow_forwardA 3-kg bar AB is attached by a pin at D to a 4-kg square plate, which can rotate freely about a vertical axis. Knowing that the angular velocity of the plate is 120 rpm when the bar is vertical, determine (a ) the angular velocity of the plate after the bar has swung into a horizontal position and has come to rest against pin C, (b) the energy lost during the plastic impact at C.arrow_forwardA slender 9 lb rod can rotate in a vertical plane about a pivot at B. A spring of constant k=30 lb/ft and of unstretched length 6 in. is attached to the rod as shown. Knowing that the rod is released from rest in the position shown, determine its angular velocity after it has rotated through 90°. 24 in. D. 5 in. C. -14 in.arrow_forward
- The rotor of an electric motor has an angular velocity of 3520 rpm when the load and power are cut off. The 110-lb rotor, which has a centroidal radius of gyration of 9 in., then coasts to rest. Knowing that the kinetic friction of the rotor produces a couple of magnitude 2.5 lb-ft, determine the number of revolutions that the rotor executes before coming to rest. The number of revolutions that the rotor executes before coming to rest is rev.arrow_forwardThe 1.5-kg uniform slender bar AB is connected to the 3-kg gear B that meshes with the stationary outer gear C The centroidal radius of gyration of gear B is 30 mm. Knowing that the system is released from rest in the position shown, determine (a) the angular velocity of the bar as it passes through the vertical position, (b ) the corresponding angular velocity of gear B.arrow_forwardEach of the gears A and B has a mass of 675 g and a radius of gyration of 40 mm, while gear C has a mass of 3.6 kg and a radius of gyration of 100 mm. Assume that kinetic friction in the bearings of gears A, B C produces couples of constant magnitude 0.15 N.m, 0.15 N.m, 0.3 N.m, respectively. Knowing that the initial angular velocity of gear C is 2000 rpm, determine the time required for the system to come to rest.arrow_forward
- 3. (17.21) A collar at point C with a mass of 1 kg is rigidly attached at a distance d = 300 mm from the end of a uniform slender rod AB. The rod has a mass of 3 kg and has a length of L = 600 mm. Knowing that the rod is released from rest in the position shown, determine the angular velocity of the rod after it has rotated through 90°. Notes: Ignore rotation of the collar since its dimensions are negligible. The controidal moment of inertia of the rod is I = m[² 12 L d Position 1 Position 1 B B A Position 2 L A' ctivate Windowsarrow_forwardA semicircular panel with a radius r is attached with hinges to a circular plate with a radius r and initially is held in the vertical position as shown. The plate and the panel are made of the same material and have the same thickness. Knowing that the entire assembly is rotating freely with an initial angular velocity of w0 , determine the angular velocity of the assembly after the panel has been released and comes to rest against the plate.arrow_forward17.72 Two 0.36-kg balls are put successively into the center C of the sler ler 1.8-kg tube AB. Knowing that when the first ball is put into the tube the initial angular velocity of the tube is 8 rad/s and neglecting the effect of friction, determine the angular velocity of the tube just after (a) the first ball has left the tube, (b) the second ball has left the tube. 360 mm Fig. P17.72 360 mmarrow_forward
- The rotor of an electric motor has an angular velocity of 3600 rpm when the load and power are cut off. The 121-lb rotor, which has a centroidal radius of gyration of 9 in., then coasts to rest. Knowing that kinetic friction results in a couple of magnitude 2.5 lb-ft exerted on the rotor, determine the number of revolutions that the rotor executes before coming to rest. The number of revolutions that the rotor executes before coming to rest isarrow_forwardTwo uniform cylinders, each of mass m = 6 kg and radius r = 125 mm, are connected by a belt as shown. Knowing that at the instant shown the angular velocity of cylinder A is 30 rad/s counterclockwise, determine (a) the time required for the angular velocity of cylinder A to be reduced to 5 rad/s, (b) the tension in the portion of belt connecting the two cylinders.arrow_forwardA 9-in-radius cylinder of weight 18 lb rests on a 6-lb carriage. The system is at rest when a force P of magnitude 2.5 lb is applied as shown for 1.2s. Knowing that the cylinder rolls without sliding on the carriage and neglecting the mass of the wheels of the carriage, determine the resulting velocity of (a) the carriage, (b) the center of the cylinder.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY