Concept explainers
The double pulley shown has a mass of 15 kg and a centroidal radius of gyration of 160 mm. Cylinder A and block B are attached to cords that are wrapped on the pulleys as shown. The coefficient of kinetic friction between block B and the surface is 0.2. Knowing that the system is at rest in the position shown when a constant force P = 200 N is applied to cylinder A, determine (a) the velocity of cylinder A as it strikes the ground, (b) the total distance that block B moves before coming to rest.
Fig. P17.14
(a)
Find the velocity of cylinder A as it strikes the ground.
Answer to Problem 17.14P
The velocity of the cylinder A when it strikes the ground is
Explanation of Solution
Given information:
The mass of the cylinder A is
The mass of the block B is
The radius of the outer pulley is
The radius of the inner pulley is
The centroidal radius of gyration is
The coefficient of friction between the surface and the block B is
The constant force applied at cylinder A is
Calculation:
Consider the acceleration due to gravity is
Consider the radius of the outer pulley as
Consider the radius of the inner pulley as
Find the velocity in the outer pulley
Here, the angular velocity of the pulley is
Find the velocity in the inner pulley
Substitute
Find the distance of the outer pulley
Here, the number of revolutions in the pulley C is
Find the distance of the inner pulley
Substitute
The initial total kinetic energy at rest is zero.
Find the mass moment of inertia in the pulley C
Here, the mass in the pulley C is
Substitute 15 kg for
Find the total kinetic energy
Substitute 5 kg for
Substitute 250 mm for
When
Substitute 150 mm for
Show free-body diagram the block B as in Figure 1.
Resolve the vertical component of forces as follows;
Find the frictional force
Substitute 0.20 for
Apply the principle of work and energy for the cylinder A, the block B and the double pulley C as follows;
Substitute 200 N for P, 1 m for
Write the equation of work and energy for the system using the equation.
Substitute 0 for
Therefore, the velocity of the cylinder A when it strikes the ground is
(b)
Find the total distance the block B moves before coming to rest.
Answer to Problem 17.14P
The total distance travelled by the block B before coming to rest is
Explanation of Solution
Given information:
The mass of the cylinder A is
The mass of the block B is
The radius of the outer pulley is
The radius of the inner pulley is
The centroidal radius of gyration is
The coefficient of friction between the surface and the block B is
The constant force applied at cylinder A is
Calculation:
Refer part (a) for
Substitute
Substitute 150 mm for
Find the total kinetic energy
Substitute 5 kg for
At the final position, the system comes at rest.
The kinetic energy at rest is zero.
Apply the principle of work and energy for the block B as follows;
Here, the additional distance travelled by the block is
Substitute
Write the equation of work and energy for the system using the equation.
Substitute 132.3066 J for
Find the total distance
Substitute 0.6 m for
Therefore, the total distance travelled by the block B before coming to rest is
Want to see more full solutions like this?
Chapter 17 Solutions
VECTOR MECH. FOR EGR: STATS & DYNAM (LL
Additional Engineering Textbook Solutions
HEAT+MASS TRANSFER:FUND.+APPL.
Introduction To Finite Element Analysis And Design
DeGarmo's Materials and Processes in Manufacturing
Thermodynamics: An Engineering Approach
Machine Elements in Mechanical Design (6th Edition) (What's New in Trades & Technology)
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
- The 12-lb uniform disk shown has a radius of r = 3.2 in. and rotates counterclockwise. Its center C is constrained to move in a slot cut in the vertical member AB, and an 11-lb horizontal force P is applied at B to maintain contact at D between the disk and the vertical wall. The disk moves downward under the influence of gravity and the friction at D. Knowing that the coefficient of kinetic friction between the disk and the wall is 0.12 and neglecting friction in the vertical slot, determine (a) the angular acceleration of the disk, (b) the acceleration of the center C of the disk.arrow_forwardThe rotor of an electric motor has an angular velocity of 4500 rpm when the load and power are cut off. The 75-kg rotor, which has a centroidal radius of gyration of 200 mm, then coasts to rest. Knowing that kinetic friction results in a couple of magnitude 4.5 N m⋅ exerted on the rotor, determine the number of revolutions that the rotor executes before coming to rest. (Final answers should be in two decimal places with correct units)arrow_forwardA garage door is mounted on an overhead rail. The wheels at A and B have rusted so that they do not roll, but rather slide along the track. The coefficient of kinetic friction is 0.55. The distance between the wheels is 2.00 m, and each is 0.50m from the vertical sides of the door. The door is uniform and weighs 850 N. It is pushed to the left at constant speed by a horizontal force F⃗, that is applied as shown in the figure. If the distance h is 1.60 m, what is the vertical component of the force exerted on the wheel A by the track? If the distance h is 1.60 m, what is the vertical component of the force exerted on the wheel B by the track? Find the maximum value hh can have without causing one wheel to leave the track.arrow_forward
- The uniform rod AB of weight W is released from rest when β = 70°. Assuming that the friction force between end A and the surface is large enough to prevent sliding, determine immediately after release (a) the angular acceleration of the rod, (b) the normal reaction at A, (c) the friction force at A.arrow_forwardAB and CD are two uniform and identical bars of mass 10 kg each, as shown. The hinges at A and Bare frictionless. The assembly is released from rest and motion occurs in the vertical plane. At the instant that the hinge B passes the point B, the angle between the two bars will be -1 m 30° B. A 0° 3. 0.5 m 0.5 marrow_forwardThe arms of a Porter governor are 225 mm long. The upper and lower arms are pivoted to links of 35 mm and 45 mm respectively from the axis of rotation. Each ball has a mass of 4 kg and the sleeve mass is 35 kg. The force of friction on the sleeve of the mechanism is 44 N. Determine the range of speed of the governor for extreme radii of rotation of 115 mm and 145 mm.arrow_forward
- The 200-mm-radius brake drum is attached to a larger Bywheel. The total mass moment of inertia of the flywheel and drum is 19 kg. and the coefficient of kinetic friction between the drum and the brake shoe is 035, Knowing that the initial angular velocity of the flywheel is 180 rpm clockwise, determine the vertical force P that must be applied to the pedal C if the system is to stop in 100 revolutions. 150 mm 250 mm B ne: P= 172.88 N C 375 mm 200 mmarrow_forwardProblem (4) An 8-kg gear with a radius of 80 mm has a centroidal radius of gyration of 50 mm. A 5-kg slender rod AB is attached to the center of the gear while the pin at B is free to slide along the vertical slot (negligible friction). When 0 = 60°, the system is released from rest. Determine S0 mm (a) the velocity of the center of the gear when 6 = 15° (b) the velocity of pin B when 0 = 15°. 320 imm BOarrow_forwardThe mechanism shown is one of two identical mechanisms attached to the two sides of a 200-lb uniform rectangular door. Edge ABC of the door is guided by wheels of negligible mass that roll in horizontal and vertical tracks. A spring with a constant k is attached to wheel B in such a way that its tension is zero when 0 = 30°, Knowing that the door is released from rest in the position 0 = 45° and reaches the vertical position with an angular velocity of 0.6 rad/s, determine the spring constant k.arrow_forward
- A cylinder of radius r and weight W with an initial counterclockwise angular velocity w0 is placed in the corner formed by the floor and a vertical wall. Denoting by μk the coefficient of kinetic friction between the cylinder and the wall and the floor, derive an expression for the time required for the cylinder to come to rest.arrow_forwardThe 6-lb steel cylinder A of radius r and the 10-lb wooden cart B are at rest in the position shown when the cylinder is given a slightnudge, causing it to roll without sliding along the top surface of the cart. Neglecting friction between the cart and the ground, determine the velocity of the cart as the cylinder passes through the lowest point of the surface at C.arrow_forwardThe double pulley shown has a mass of 15 kg and a centroidal radius of gyration of 160 mm. Cylinder A and block B are attached to cords that are wrapped on the pulleys as shown. The coefficient of kinetic friction between block B and the surface is μs = 0.2. Given that the system is at rest when the 200 N force is applied to cylinder A, determine the velocity of cylinder A as it strikes the ground.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY