VECTOR MECH. FOR EGR: STATS & DYNAM (LL
12th Edition
ISBN: 9781260663778
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17.3, Problem 17.108P
A bullet of mass m is fired with a horizontal velocity v0 and at a height
Fig. P17.108
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sphere of radius r and mass m has a linear velocity v0 directed to the left and no angular velocity as it is placed on a belt moving to the right with a constant velocity v1. If after first sliding on the belt the sphere is to have no linear velocity relative to the ground as it starts rolling on the belt without sliding, determine in terms of v1 and the coefficient of kinetic friction µk between the sphere and the belt (a) the required value of v0, (b) the time t1 at which the sphere will start rolling on the belt, (c) the distance the sphere will have moved relative to the ground at time t1.
A bowler sends his ball down the lane with a forward velocity of 10 ft/s and backspin of 12 rad/s.
His ball weighs 16 lbs and has a diameter of 10 in. Knowing that a bowling ball has more weight
concentrated towards the center, we will estimate the mass moment of inertia as: I = mr².
Starting from t, at the moment the ball hits the alley, and knowing the coefficient of friction is
0.10, determine:
(a) The time t, when the ball starts to roll forward without sliding
(b) The speed of the ball at this time
(c) The distance the ball has traveled at this time
00
Vo
9. 2) The target is a thin 4.3-kg circular disk of radius r= 273 mm that can rotate
freely about the z axis. Initially it is at rest. A 21-g bullet, traveling at v = 630 m/s,
strikes the target at A and becomes embedded in it. The dimensions are di = 219
mm and d2 = 90 mm. If the impact time is 0.02 s, determine the average impact force
between the bullet and the target. Please pay attention: the numbers may change
since they are randomized. Your answer must include 2 places after the decimal
point, and proper Sl unit. Take g = 9.81 m/s?.
'pe
Chapter 17 Solutions
VECTOR MECH. FOR EGR: STATS & DYNAM (LL
Ch. 17.1 - A round object of mass m and radius r is released...Ch. 17.1 - Prob. 17.2CQCh. 17.1 - Prob. 17.3CQCh. 17.1 - Prob. 17.4CQCh. 17.1 - Slender bar A is rigidly connected to a massless...Ch. 17.1 - A 200-kg flywheel is at rest when a constant 300...Ch. 17.1 - The rotor of an electric motor has an angular...Ch. 17.1 - Prob. 17.3PCh. 17.1 - Two disks of the same material are attached to a...Ch. 17.1 - The flywheel of a punching machine has a weight of...
Ch. 17.1 - Prob. 17.6PCh. 17.1 - Prob. 17.7PCh. 17.1 - Prob. 17.8PCh. 17.1 - The 10-in.-radius brake drum is attached to a...Ch. 17.1 - Prob. 17.10PCh. 17.1 - Each of the gears A and B has a mass of 10 kg and...Ch. 17.1 - Solve Prob. 17.11, assuming that the 6 Nm couple...Ch. 17.1 - Prob. 17.13PCh. 17.1 - The double pulley shown has a mass of 15 kg and a...Ch. 17.1 - Gear A has a mass of 1 kg and a radius of gyration...Ch. 17.1 - A slender rod of length l and mass m is pivoted...Ch. 17.1 - The 15-kg rear hatch of a vehicle opens as shown...Ch. 17.1 - A slender 9-lb rod can rotate in a vertical plane...Ch. 17.1 - An adapted golf device attaches to a wheelchair to...Ch. 17.1 - A 10-kg storm window measuring 900 1500 mm is...Ch. 17.1 - A collar with a mass of 1 kg is rigidly attached...Ch. 17.1 - A collar with a mass of 1 kg is rigidly attached...Ch. 17.1 - Two identical slender rods AB and BC are welded...Ch. 17.1 - Prob. 17.24PCh. 17.1 - A 100-kg solid cylindrical disk, 800 mm in...Ch. 17.1 - Prob. 17.26PCh. 17.1 - Greek engineers had the unenviable task of moving...Ch. 17.1 - A small sphere of mass m and radius r is released...Ch. 17.1 - Prob. 17.29PCh. 17.1 - A half-cylinder with mass m and radius r is...Ch. 17.1 - Prob. 17.31PCh. 17.1 - Two uniform cylinders, each of weight W = 14 lb...Ch. 17.1 - Prob. 17.33PCh. 17.1 - A bar of mass m = 5 kg is held as shown between...Ch. 17.1 - The 1.5-kg uniform slender bar AB is connected to...Ch. 17.1 - The motion of the uniform rod AB is guided by...Ch. 17.1 - Prob. 17.37PCh. 17.1 - Prob. 17.38PCh. 17.1 - The ends of a 9-lb rod AB are constrained to move...Ch. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - Each of the two rods shown is of length L = 1 m...Ch. 17.1 - The 4-kg rod AB is attached to a collar of...Ch. 17.1 - If in Prob. 17.43 the angular velocity of the...Ch. 17.1 - The uniform rods AB and BC are of mass 3 kg and 8...Ch. 17.1 - The uniform rods AB and BC weigh 2.4 kg and 4 kg,...Ch. 17.1 - The 80-mm-radius gear shown has a mass of 5 kg and...Ch. 17.1 - Prob. 17.48PCh. 17.1 - Three shafts and four gears are used to form a...Ch. 17.1 - The experimental setup shown is used to measure...Ch. 17.1 - Prob. 17.51PCh. 17.2 - The 350-kg flywheel of a small hoisting engine has...Ch. 17.2 - Prob. 17.2IMDCh. 17.2 - Prob. 17.3IMDCh. 17.2 - Prob. 17.52PCh. 17.2 - A bolt located 2 in. from the center of an...Ch. 17.2 - A small grinding wheel is attached to the shaft of...Ch. 17.2 - A uniform 144-lb cube is attached to a uniform...Ch. 17.2 - Prob. 17.56PCh. 17.2 - Prob. 17.57PCh. 17.2 - Prob. 17.58PCh. 17.2 - Prob. 17.59PCh. 17.2 - Each of the double pulleys shown has a centroidal...Ch. 17.2 - Each of the gears A and B has a mass of 675 g and...Ch. 17.2 - Two identical uniform cylinders of mass m and...Ch. 17.2 - Two identical 16-lb uniform cylinders of radius r...Ch. 17.2 - Prob. 17.64PCh. 17.2 - Prob. 17.65PCh. 17.2 - Show that, when a rigid body rotates about a fixed...Ch. 17.2 - Prob. 17.68PCh. 17.2 - A flywheel is rigidly attached to a 1.5-in.-radius...Ch. 17.2 - A wheel of radius r and centroidal radius of...Ch. 17.2 - Prob. 17.71PCh. 17.2 - 17.72 and 17.73The 3-lb carriage C is supported as...Ch. 17.2 - Prob. 17.73PCh. 17.2 - Two uniform cylinders, each of mass m = 6 kg and...Ch. 17.2 - Prob. 17.75PCh. 17.2 - Prob. 17.76PCh. 17.2 - A sphere of radius r and mass m is projected along...Ch. 17.2 - A bowler projects an 8.5-in.-diameter ball...Ch. 17.2 - Prob. 17.79PCh. 17.2 - A satellite has a total weight (on Earth) of 250...Ch. 17.2 - Two 10-lb disks and a small motor are mounted on a...Ch. 17.2 - Prob. 17.82PCh. 17.2 - Prob. 17.83PCh. 17.2 - Prob. 17.84PCh. 17.2 - Prob. 17.85PCh. 17.2 - Prob. 17.86PCh. 17.2 - The 30-kg uniform disk A and the bar BC are at...Ch. 17.2 - Prob. 17.88PCh. 17.2 - A 1.8-kg collar A and a 0.7-kg collar B can slide...Ch. 17.2 - Prob. 17.90PCh. 17.2 - A small 4-lb collar C can slide freely on a thin...Ch. 17.2 - Rod AB has a weight of 6 lb and is attached to a...Ch. 17.2 - A 3-kg uniform cylinder A can roll without sliding...Ch. 17.2 - The 4-kg cylinder B and the 3-kg wedge A are at...Ch. 17.2 - The 6-lb steel cylinder A of radius r and the...Ch. 17.3 - A uniform slender rod AB of mass m is at rest on a...Ch. 17.3 - Prob. 17.5IMDCh. 17.3 - Prob. 17.6IMDCh. 17.3 - At what height h above its center G should a...Ch. 17.3 - A bullet weighing 0.08 lb is fired with a...Ch. 17.3 - In Prob. 17.97, determine (a) the required...Ch. 17.3 - A 16-lb wooden panel is suspended from a pin...Ch. 17.3 - Prob. 17.100PCh. 17.3 - A 45-g bullet is fired with a velocity of 400 m/s...Ch. 17.3 - A 45-g bullet is fired with a velocity of 400 m/s...Ch. 17.3 - The tire shown has a radius R = 300 mm and a...Ch. 17.3 - Prob. 17.104PCh. 17.3 - A uniform slender rod AB of mass m is at rest on a...Ch. 17.3 - A uniform slender rod AB is at rest on a...Ch. 17.3 - A bullet of mass m is fired with a horizontal...Ch. 17.3 - Determine the height h at which the bullet of...Ch. 17.3 - A uniform slender bar of length L = 200 mm and...Ch. 17.3 - A uniform slender rod of length L is dropped onto...Ch. 17.3 - A uniform slender rod AB has a mass m, a length L,...Ch. 17.3 - You have been hired to design a baseball catcher...Ch. 17.3 - The trapeze/lanyard air drop (t/LAD) launch is a...Ch. 17.3 - The uniform rectangular block shown is moving...Ch. 17.3 - The 40-kg gymnast drops from her maximum height of...Ch. 17.3 - A uniform slender rod AB of length L = 600 mm is...Ch. 17.3 - Prob. 17.118PCh. 17.3 - A 1-oz bullet is fired with a horizontal velocity...Ch. 17.3 - For the beam of Prob. 17.119, determine the...Ch. 17.3 - Prob. 17.121PCh. 17.3 - Prob. 17.122PCh. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - Prob. 17.124PCh. 17.3 - Block A has a mass m and is attached to a cord...Ch. 17.3 - Prob. 17.126PCh. 17.3 - 17.127 and 17.128Member ABC has a mass of 2.4 kg...Ch. 17.3 - 17.127 and 17.128Member ABC has a mass of 2.4 kg...Ch. 17.3 - Prob. 17.129PCh. 17.3 - Prob. 17.130PCh. 17.3 - A small rubber ball of radius r is thrown against...Ch. 17.3 - Sphere A of mass m and radius r rolls without...Ch. 17.3 - In a game of pool, ball A is rolling without...Ch. 17 - A uniform disk, initially at rest and of constant...Ch. 17 - The 8-in.-radius brake drum is attached to a...Ch. 17 - A uniform slender rod is placed at corner B and is...Ch. 17 - The motion of the slender 250-mm rod AB is guided...Ch. 17 - A baseball attachment that helps people with...Ch. 17 - Disks A and B are made of the same material, are...Ch. 17 - Disks A and B are made of the same material, are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A bowling ball ( m₁ = 3.00 kg and radius of r = 50.0 mm) which has an angular and linear velocity of 57.1 rad/s and 2.85 m/s, respectively, rolls without sliding and hits a slender Bar B of mass m_2 = 1.00 kg and length L = 0.12 m, which is initially at rest as shown in the following figure. Neglecting the friction between the sphere and the bar, and knowing the coefficient of restitution between the sphere and the bar is 0.2, determine (1) the angular velocity of Bar B immediately after impact, and (2) the linear velocities of sphere A and bar B immediately after impact (and at their centroids).arrow_forwardThe 2.00-kg slender rod shown is hanging in a vertical position and is pin-supported at point A. The slender rod is initially at rest until a 1.000-kg block C, strikes it at its end at point B.The block slides on a frictionless surface with a velocity of 3.50 m/s to the right. After the impact, it slides with a velocity of 1.250 m/s to the right, and the bar rotates with an angular velocity, ω'. Sketch the moment-impulse diagram 1. Which of the following gives the correct kinematic relationship relating the final velocity of the center of the rod, v'G, and its angular velocity, ω'? 2. Which of the following gives the closest value of the coefficient of restitution, e, between the block and the slender rod? 3. Which of the following gives the closest value of the magnitude of the horizontal impulse at the support at point A?arrow_forwardThe 2.00-kg slender rod shown is hanging in a vertical position and is pin-supported at point A. The slender rod is initially at rest until a 1.000-kg block C, strikes it at its end at point B.The block slides on a frictionless surface with a velocity of 3.50 m/s to the right. After the impact, it slides with a velocity of 1.250 m/s to the right, and the bar rotates with an angular velocity, ω'. 1. What gives the correct kinematic relationship relating the final velocity of the center of the rod, v' , and its angular velocity, ω'? 2. What is the coefficient of restitution, e, between the block and the slender rod? 3. What is the magnitude of the horizontal impulse at the support at point A?arrow_forward
- The 2.00-kg slender rod shown is hanging in a vertical position and is pin-supported at point A. The slender rod is initially at rest until a 1.000-kg block C, strikes it at its end at point B. The block slides on a frictionless surface with a velocity of 3.50 m/s to the right. After the impact, it slides with a velocity of 1.250 m/s to the right, and the bar rotates with an angular velocity, w'. 3.5 m/s с B 1.5 m Answer the following questions given the picture. Please show clear solutions, I want to learn how to solve the problem. 1a. Which of the following gives the correct kinematic relationship relating the final velocity of the center of the rod, v'G, and its angular velocity, w'? A) 1.333 w' B) 0.667 w' C) 1.500 w' D) 0.75 w' 1b. Which of the following gives the closest value of the magnitude of the horizontal impulse at the support at point A? A) 1.125 N-s B) 1.350 N-s C) 0.1180 N-s D) 2.25 N-sarrow_forwardA uniform slender bar of length L = 200 mm and mass m = 0.5 kg is supported by a frictionless horizontal table. Initially the bar is spinning about its mass center G with a constant angular speed w1 = 6 rad/s. Suddenly latch D is moved to the right and is struck by end A of the bar. Knowing that the coefficient of restitution between A and D is e= 0.6, determine the angular velocity of the bar and the velocity of its mass center immediately after the impact.arrow_forwardIn the system shown, a 150 N collar-pulley assembly slides on a horizontal shaft with coefficient of kinetic friction uk =0.10 between the collar and the shaft, and is acted upon by a force P with a magnitude of P = 250N at an angle 0 = 30 as shown. Knowing that the assembly is initially at rest, what is the time when the velocity of collar B reaches to 3 m/s? Also, at this instant, find the tensile force in the cord and the velocity of block A.arrow_forward
- A 1 kg ball initially travelling at 7 m/s strikes on the lower end of a 5 kg bar AB, as shown in Figure Q2(a). The bar is hinged at A and is initially at rest. The coefficient of restitution between the rod and sphere is 0.7. (i) Determine the angular velocity of the bar and the velocity of the ball immediately after impact. From your working in Q2(a)(i), explain how the ball and rod masses can influence the angular velocity of the bar and the velocity of the ball immediately after impact. (ii) A L/2 G L=800 mm 7 m/s Вarrow_forwardHello! Can I have the solution to this question, when the mass of m is 218kg. Both parts please.arrow_forwardA uniform cylindrical turntable of radius 1.9 m and mass 30.0kg rotates counterclockwise in a horizontal plane with an initial angular speed of 4pi rad/s. The fixed turntable bearing is frictionless. A lump of clay of mass 2.25kg and negligible size is dropped onto the turntable from a small distance above it and immediately sticks to the turntable at a point 1.80m to the east of the axis. A. Find the final angular speed of the clay and turntable. B. Is the mechanical energy of the turntable-clay system constant in this process? C. Is the momentum of the system constant in this process? Explain your answer.arrow_forward
- A meter stick with a mass of 0.180 kg is pivoted about one end so it can rotate without friction about a horizontal axis. The meter stick is held in a horizontal position and released. As it swings through the vertical, calculate (a) the change in gravitational potential energy that has occurred; (b) the angular speed of the stick; (c) the linear speed of the end of the stick opposite the axis. (d) Compare the answer in part (c) to the speed of a particle that has fallen 1.00 m, starting from restarrow_forwardA billiard ball of radius R and mass Mis struck with a cue in such a way that the line of action of the applied momentum is horizontal and passes through the center of the ball. The initial velocity of the ball is v, and the coefficient of friction between the ball and the table is up. Consider that the angular velocity w, at the moment of the impulse is zero. Find the acceleration of the center of mass of the ball while it was skating; the velocity of the ball's center of mass when it stops skating and finally the distance the ball travels before it stops skating. R 5vo 12v Ans. ä =-k9 Vf 49H9arrow_forwardDisk A has mass mA = 4.5 kg, radius rA = 278 mm, and initial angular velocity ω0A = 300 rpm clockwise. Disk B has mass mB = 1.0 kg, radius rB = 199 mm, and is at rest when it comes into contact with disk A. Knowing that μk = 0.45 between the disks and neglecting rolling friction ,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY