A constant-volume tank contains a mixture of 1 mol of H2 and 0.5 mol of O2 at 25°C and 1 atm. The contents of the tank are ignited, and the final temperature and pressure in the tank are 2800 K and 5 atm, respectively. If the combustion gases consist of H2O, H2, and O2, determine (a) the equilibrium composition of the product gases and (b) the amount of heat transfer from the combustion chamber. Is it realistic to assume that no OH will be present in the equilibrium mixture?
a)
The equilibrium composition of mixture of
Answer to Problem 93RP
The equilibrium composition of mixture of
Explanation of Solution
Write the stoichiometric reaction for dissociation of water.
From Equation (I), infer that the stoichiometric coefficient for oxygen
Write the actual reaction for the combustion process.
From Equation (II), infer that the equilibrium composition contains x amount of
Write the formula for total number of moles
Substitute x for
Write the equilibrium constant
Here, pressure is P.
Conclusion:
Refer the table A-28, “Natural logarithm of equilibrium constants’, obtain the value of
Substitute
Substitute 0.944 for x in Equation (II).
Thus, the equilibrium composition of mixture of
b)
The amount of heat released per kg of hydrogen.
Answer to Problem 93RP
The amount of heat released per kg of hydrogen is
Explanation of Solution
Write the energy balance equation for the combustion process.
Here, heat released during combustion is
Conclusion:
Refer the table A-26, “Enthalpy of formation table”, obtain the enthalpy of
Refer the table A-18, “Ideal gas properties of hydrogen gas”, obtain the following properties of hydrogen gas at different temperature.
Enthalpy of hydrogen gas at 2800 K,
Enthalpy of hydrogen gas at 298 K,
Refer the table A-19, “Ideal gas properties of oxygen gas”, obtain the following properties of oxygen gas at different temperature.
Enthalpy of oxygen gas at 2800 K,
Enthalpy of oxygen gas at 298 K,
Refer the table A-19, “Ideal gas properties of water vapor”, obtain the following properties of water vapor at different temperature
Enthalpy of water vapor at 2800 K,
Enthalpy of water vapor at 298 K,
Substitute
Thus, the amount of heat released per kg of hydrogen is
Want to see more full solutions like this?
Chapter 16 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
- 1.21 A one-dimensional plane wall is exposed to convective and radiative conditions at x = 0. The ambient and sur- rounding temperatures are T = 20°C and Tur = 40°C, respectively. The convection heat transfer coefficient is h=20 W/m² K, and the absorptivity of the exposed sur- face is α=0.78. Determine the convective and radiative heat fluxes to the wall at x = 0 if the wall surface tem- perature is T, = 24°C. Assume the exposed wall surface is gray, and the surroundings are large.arrow_forward1.12 You've experienced convection cooling if you've ever extended your hand out the window of a moving vehi- cle or into a flowing water stream. With the surface of your hand at a temperature of 30°C, determine the con- vection heat flux for (a) a vehicle speed of 40 km/h in air at -8°C with a convection coefficient of 40 W/m² K and (b) a velocity of 0.2 m/s in a water stream at 10°C with a convection coefficient of 900 W/m²K. Which condition would feel colder? Contrast these results with a heat flux of approximately 30 W/m² under normal room conditions.arrow_forwardPLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT SOLVE BY HAND STEP BY STEParrow_forward
- 1. A 40 lb. force is applied at point E. There are pins at A, B, C, D, and F and a roller at A. a. Draw a FBD of member EFC showing all the known and unknown forces acting on it. b. Draw a FBD of member ABF showing all the known and unknown forces acting on it. c. Draw a FBD of member BCD showing all the known and unknown forces acting on it. d. Draw a FBD of the entire assembly ADE showing all the known and unknown forces acting on it. e. Determine the reactions at A and D. f. Determine the magnitude of the pin reaction at C. 40 lbs. B A 6 in. 4 in. D F -5 in.4 in 4.arrow_forwardA crude oil of specific gravity0.85 flows upward at a volumetric rate of flow of 70litres per second through a vertical venturimeter,with an inlet diameter of 250 mm and a throat diameter of 150mm. The coefficient of discharge of venturimeter is 0.96. The vertical differences betwecen the pressure toppings is 350mm. i) Draw a well labeled diagram to represent the above in formation i) If the two pressure gauges are connected at the tapings such that they are positioned at the levels of their corresponding tapping points, determine the difference of readings in N/CM² of the two pressure gauges ii) If a mercury differential manometer is connected in place of pressure gauges, to the tappings such that the connecting tube up to mercury are filled with oil determine the difference in the level of mercury column.arrow_forwardCan you solve it analytically using laplace transforms and with Matlab code as well please. Thank Youarrow_forward
- Can you solve it analytically using laplace transforms and with Matlab code as well please. Thank You.arrow_forwardQ11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.arrow_forwardplease help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoaarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY