a)
The amount of heat required for the process.
a)
Answer to Problem 94RP
The amount of heat required for the process is
Explanation of Solution
Write the energy balance equation for the reported process.
Here, input energy is
Write the expression to obtain the amount of heat required for the process
Here, number of moles is N, internal energy of the system at state 1 is
Write the expression to obtain the internal energy of the system at state 1
Here, enthalpy of the system at state 1 is
Write the expression to obtain the internal energy of the system at state 2
Here, enthalpy of the system at state 2 is
Write the expression to obtain the change in enthalpy of the system
Conclusion:
Substitute
Refer Table A-2c, “Ideal-gas specific heats of various common gases”, obtain the specific heat relation as
Substitute
Here, constants are a, b, c and d.
Refer Table A-2c, “Ideal-gas specific heats of various common gases”, obtain the values of constants a, b, c and d for methane as 19.89,
Substitute 19.89 for a,
Substitute
Thus, the amount of heat required for the process is
b)
The amount of heat required for the process.
b)
Answer to Problem 94RP
The amount of heat required for the process is
Explanation of Solution
Write the stoichiometric reaction for the dissociation process.
From the stoichiometric reaction, infer that the stoichiometric coefficient for methane
Write the expression to obtain the actual reaction for the dissociation process.
From the actual reaction, infer that the equilibrium composition contains x amount of methane
Write the expression to obtain the total number of moles
Here, number of moles of
Write the expression to obtain the equilibrium constant
Here, pressure is P.
Write the expression to obtain the mole fraction of Methane
Write the expression to obtain the mole fraction of carbon
Write the expression to obtain the mole fraction of hydrogen
Write the expression to obtain the amount of heat required for the process
Here, specific heat of methane is
Conclusion:
Write the carbon balance equation from Equation (VIII).
Write the hydrogen balance equation from Equation (VIII).
Substitute x for
Substitute
Substitute 0.641 for x in equation (XV).
Substitute 0.641 for x in equation (XVI).
Substitute 0.641 for x in equation (XVII).
Substitute 0.641 for x, 0.359 for y, and 0.718 for z in Equation (VIII).
Substitute 0.641 for x, and 1.718 for
Substitute 0.359 for x, and 1.718 for
Substitute 0.718 for x, and 1.718 for
Substitute 10 kmol for N, 0.37 for
Thus, the amount of heat required for the process is
Want to see more full solutions like this?
Chapter 16 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
- Can you solve it analytically using laplace transforms and with Matlab code as well please. Thank You.arrow_forwardQ11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.arrow_forwardplease help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoaarrow_forward
- Solve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forward
- University of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forwardSolve using graphical method and analytical method, only expert should solvearrow_forwardSolve this and show all of the workarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY