THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Question
Chapter 16.6, Problem 110FEP
To determine
The reaction whose produce the more numbers of moles of products.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the following reaction:
4NH3(g) + 5O2 (g) → 4NO (g) + 6H2O(g)
a container were to have only 10 molecules of O2 and 10 molecules of NH3 (g) , how many total molecules (reactant and product) would be present in the container after the above reaction goes to completion?ing “microscopic” pictures, draw the total molecules present inside the container after the reaction occurs.at mass of NO(g) is present in the container after the reaction occurs? (Report your final answer to 4 significant figures.)
Oxygen (02) is used as oxidizer to Converet
Co ( fuel) completely into c02. The products
contain only Co2 and O2. The mole fraction
of Oz in products is o.40. The equivalence
ratio for this chemical reaction i's.
a. 0.23 ; b. 0.33 ; C. 0.43; d. 0·53 ;e.o.63
Consider the gas-phase reaction for the synthesis of methanol from
CO and O₂: CO + 2H₂ CH3OH. The value of the equilibrium
constant Kp at 500 K is 6.23 x 10-³. Initially equimolar amounts of
CO and H₂ are introduced into the reaction vessel. Determine the
equilibrium mole fractions at 500 K and 30 bar.
Chapter 16 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 16.6 - Why is the criterion for chemical equilibrium...Ch. 16.6 - Write three different KPrelations for reacting...Ch. 16.6 - Is a wooden table in chemical equilibrium with the...Ch. 16.6 - A reaction chamber contains a mixture of CO2, CO,...Ch. 16.6 - A reaction chamber contains a mixture of N2and N...Ch. 16.6 - A reaction chamber contains a mixture of CO2, CO,...Ch. 16.6 - Which element is more likely to dissociate into...Ch. 16.6 - Prob. 8PCh. 16.6 - Prob. 9PCh. 16.6 - Prob. 10P
Ch. 16.6 - Prob. 11PCh. 16.6 - Prob. 12PCh. 16.6 - Prob. 13PCh. 16.6 - Prob. 14PCh. 16.6 - Prob. 15PCh. 16.6 - Prob. 16PCh. 16.6 - Prob. 17PCh. 16.6 - Prob. 18PCh. 16.6 - Prob. 19PCh. 16.6 - Prob. 20PCh. 16.6 - Prob. 21PCh. 16.6 - Prob. 22PCh. 16.6 - Prob. 23PCh. 16.6 - Determine the equilibrium constant KP for the...Ch. 16.6 - Prob. 26PCh. 16.6 - Prob. 27PCh. 16.6 - Carbon monoxide is burned with 100 percent excess...Ch. 16.6 - Prob. 30PCh. 16.6 - Prob. 31PCh. 16.6 - Estimate KP for the following equilibrium reaction...Ch. 16.6 - Prob. 33PCh. 16.6 - A mixture of 3 mol of N2, 1 mol of O2, and 0.1 mol...Ch. 16.6 - Prob. 35PCh. 16.6 - Prob. 36PCh. 16.6 - Prob. 37PCh. 16.6 - Prob. 38PCh. 16.6 - Prob. 40PCh. 16.6 - What is the equilibrium criterion for systems that...Ch. 16.6 - Prob. 43PCh. 16.6 - Prob. 44PCh. 16.6 - Prob. 45PCh. 16.6 - Prob. 47PCh. 16.6 - Prob. 48PCh. 16.6 - Prob. 51PCh. 16.6 - Prob. 52PCh. 16.6 - Prob. 53PCh. 16.6 - Prob. 54PCh. 16.6 - Prob. 55PCh. 16.6 - Prob. 56PCh. 16.6 - Prob. 58PCh. 16.6 - Prob. 59PCh. 16.6 - Prob. 60PCh. 16.6 - Prob. 61PCh. 16.6 - Using the Henrys constant data for a gas dissolved...Ch. 16.6 - Prob. 63PCh. 16.6 - Prob. 64PCh. 16.6 - Prob. 65PCh. 16.6 - Prob. 66PCh. 16.6 - A liquid-vapor mixture of refrigerant-134a is at...Ch. 16.6 - Prob. 68PCh. 16.6 - Prob. 69PCh. 16.6 - An oxygennitrogen mixture consists of 30 kg of...Ch. 16.6 - Prob. 71PCh. 16.6 - Prob. 72PCh. 16.6 - Prob. 73PCh. 16.6 - Prob. 74PCh. 16.6 - Prob. 75PCh. 16.6 - Prob. 76PCh. 16.6 - An ammoniawater absorption refrigeration unit...Ch. 16.6 - Prob. 78PCh. 16.6 - Prob. 79PCh. 16.6 - Prob. 80PCh. 16.6 - One lbmol of refrigerant-134a is mixed with 1...Ch. 16.6 - Prob. 82RPCh. 16.6 - Prob. 83RPCh. 16.6 - Prob. 84RPCh. 16.6 - Prob. 85RPCh. 16.6 - Prob. 88RPCh. 16.6 - Prob. 89RPCh. 16.6 - Prob. 90RPCh. 16.6 - Prob. 91RPCh. 16.6 - Prob. 92RPCh. 16.6 - A constant-volume tank contains a mixture of 1 mol...Ch. 16.6 - Prob. 94RPCh. 16.6 - Prob. 95RPCh. 16.6 - Prob. 96RPCh. 16.6 - Prob. 97RPCh. 16.6 - Prob. 99RPCh. 16.6 - Consider a glass of water in a room at 25C and 100...Ch. 16.6 - Prob. 101RPCh. 16.6 - Prob. 102RPCh. 16.6 - Prob. 105RPCh. 16.6 - Prob. 106RPCh. 16.6 - Prob. 107RPCh. 16.6 - Prob. 108RPCh. 16.6 - Prob. 109FEPCh. 16.6 - Prob. 110FEPCh. 16.6 - Prob. 111FEPCh. 16.6 - Prob. 112FEPCh. 16.6 - Prob. 113FEPCh. 16.6 - Prob. 114FEPCh. 16.6 - Propane C3H8 is burned with air, and the...Ch. 16.6 - Prob. 116FEPCh. 16.6 - Prob. 117FEPCh. 16.6 - The solubility of nitrogen gas in rubber at 25C is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- use JANAF tables from internetarrow_forwardThe standard enthalpy of formation of solid barium oxide, BaO, is –553.5 kJ/mol, andthe standard enthalpy of formation of barium peroxide, BaO2, is –634.3 kJ/mol.(a) Calculate the standard enthalpy change for the following reaction. Is the reactionexothermic or endothermic?2 BaO2(s) → 2 BaO(s) + O2(g)(b) Draw an energy level diagram that shows the relationship between the enthalpychange of the decomposition of BaO2, to BaO and O2, and the enthalpies of formationof BaO2(s) and BaO2(s)arrow_forward3) An ideal gas consisting of one mole of molecules of type A is in contact with the surroundings at T=300 K, and under a constant pressure of 1 atm. The gas undergoes a spontaneous isomeric chemical reaction, wherein some fraction x of molecules of type A change shape, become isomers of type B. This results in an equilibrium mixture of 1-x moles of A and x moles of B. The enthalpy of B is lower than the enthalpy of A by 3 kJ/mole, such that AH = -xɛ; & = 3kJ/mole . The change in entropy is given by AS ==R(xln x+ (1–x)ln(1– x)). Use the computer to graph the change in Gibbs free energy as a function of x. Determine, by inspection of your graph, or otherwise, the concentration of A and the concentration of B when equilibrium is obtained. What is the maximum work that could be extracted from this process (aside from PV work)? P= latm (consternt) T: 300karrow_forward
- 8. Calculate the standard enthalpy change for the reaction: 3NO2(g) + H2O(l) →2HNO3(aq) + NO(g) given the following data: AH°/kJ mol-1 2NO(g) + O2(g) → 2NO2(g) -173 2N2(g) +502(g) + 2H2O(l) → 4HNO3(aq) -255 N2(g) + O2(g) → 2NO(g) +181arrow_forwardConsider the reaction 2POCl3 (g) → 2PCl3 (g) + O2 (g) a. Calculate ∆G° for this reaction. The values ∆G°f for POCI3(g) and PCI3(g) are −502 kJ/mol and−270. kJ/mol, respectively.b. Is this reaction spontaneous under standard conditions at 298 K?c. The value of ∆S° for this reaction is 179 J/K mol. At what temperatures is this reaction spontaneous at standard conditions? Assume that ∆H° and ∆S° do not depend on temperature.arrow_forwardThe products from the combustion of a stoichiometric mixture of CO and O2 are at a pressure of latm and a certain temperature. The products analysis shows that 35% of each kmol if CO, is dissociated. Determine the equilibrium constant for this temperature, and hence find the percentage dissociation when the products are at the same temperature but compressed to 10 atmospheres.arrow_forward
- 1. On stoichiometric calculations. For the given balanced equation: C,H1206 +6 02 6 H20 + 6 CO2 Calculate: a) How many moles of oxygen are required to react completely with 3 moles of glucose, C6H12O6 ?arrow_forwardFor the reaction H2(g) + Br2(g) 2HBr(g), Kc = 81.4 at 385ºC. If [H2] = [Br2] = [HBr] = 1.6 × 10–2 M at 385ºC, which one of the following is correct? Group of answer choices The reaction is at equilibrium already. The reaction will proceed in the forward direction because K > 1. The reaction will proceed in the reverse direction to reach equilibrium because Q < K. The reaction will proceed in the forward direction to reach equilibrium.arrow_forwardFrom the following enthaipy changes Fe2O3{s) + 3 CO(g) → 2 Fe(s) + 3 CO2(g) C(s) + CO2(9) 2 CO(g) AH°rn = -27.00 kJ AH°xn = 172.00 kJ Calculate the value of AH° for the reaction: 2 Fe2O3(s) + 3C(s)→ 4 Fe(s) + 3 CO2(g)arrow_forward
- Consider the dissociation of N₂04 into NO2 described by N₂04 2NO₂. Assume that we start with no moles of N₂O4 and no NO₂. (a) Derive an expression for Seq/no in terms of pressure (p) and Kp, where Seq=no - nN₂04,eq is the extent of reaction.arrow_forwardThe volumetric analysis of the dry products of combustion of a hydrocarbon fuel described by the general formula CxHy is: 13.6% CO₂ ; 0.4% 02; 0.8% Co; 0.4% CH4 and 84.8% N₂ Determin the values of x and y for the fuel on the basis of 13.6 moles • of coz in the products of combustion.arrow_forwardA 10% rich mixture of Heptane (C,H16) and air is initially at a pressure of 1 bar and temperature of 100°C, and is polytropically compressed through a volumetric ratio of 6 to 1. It is ignited and adiabatic combustion proceeds at constant volume. The maximum temperature reached is 2627°C and at this temperature the equilibrium constants are PH₂OPCO = 6.72 PCO₂PH₂ P²coPo₂ = 0.054 Pco2po ' = 1bar is a reference pressure for the equilibrium constants. if the constituents of the gas are CO2, CO, H₂O, H₂, O2 and N₂: (a) Calcuate the reaction equation without dissociation (b) Calculate the equilibrium product composition. (c) Verify that approximately 30.2 % of the carbon has burned incompletely. Notes: the number of moles is not conserved in this reaction! You may use any method to solve the (nonlinear) equations you derive.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License