Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 16.5, Problem 16.4PSP
Interpretation Introduction
Interpretation:
Whether the synthesis of ammonia from nitrogen and hydrogen gas is prodict-favored or not at
Concept Introduction:
The term entropy is used to represent the randomness in a system. When a system moves from an ordered arrangement to a less order arrangement, then the entropy of the system increases. The second law of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Gibbs free energy (G�) is a measure of the spontaneity of a chemical reaction. It is the chemical potential for a reaction, and is minimized at equilibrium. It is defined as
G=H−TS�=�−��
where H� is enthalpy, T� is temperature, and S� is entropy.
The chemical reaction that causes magnesium to corrode in air is given by
2Mg+O2→2MgO2Mg+O2→2MgO
in which at 298 K, ΔH∘rxn = −1204 kJΔ�rxn∘ = −1204 kJ and ΔS∘rxn = −217.1 J/KΔ�rxn∘ = −217.1 J/K.
Part A
Part complete
What is the standard Gibbs free energy for this reaction? Assume the commonly used standard reference temperature of 298 K.
Part B
What is the Gibbs free energy for this reaction at 5958 KK ? Assume that ΔHΔ� and ΔSΔ� do not change with temperature.
Express your answer to two decimal places and include the appropriate units.
Part C
At what temperature Teq�eq do the forward and reverse corrosion reactions occur in equilibrium?
Express your answer as an integer and include the appropriate units.
How much energy (at constant temperature and pressure) must be supplied as heat to 10.0 g of chlorine gas (as Cl2) to produce a plasma composed of Cl- and Cl+ ions? The enthalpy of ionization of Cl(g) is +12575 kJ mol-1 and its electron gain enthalpy is -349 kJ mol-1. Hence identify the standardenthalpy of ionization of Cl- (g).
2. In a non-ideal binary mixture of A and B, the chemical potential of A is
(a) The partial derivative of the total Gibbs free energy, with respect to the
number of moles of A.
(b) The partial derivative of the Gibbs free energy of A, with respect to the
number of moles of A.
(c) The partial derivative of the Gibbs free energy of B, with respect to the
number of moles of A.
(d) The total Gibbs free energy, divided by the number of moles of A.
(e) The Gibbs free energy of A, divided by the number of moles of A.
Chapter 16 Solutions
Chemistry: The Molecular Science
Ch. 16.1 - Write a chemical equation for each process and...Ch. 16.2 - Prob. 16.2CECh. 16.3 - A chemical reaction transfers 30.8 kJ to a thermal...Ch. 16.3 - Prob. 16.3CECh. 16.3 - Prob. 16.2PSPCh. 16.3 - For each process, predict whether entropy...Ch. 16.4 - Calculate the entropy change for each of these...Ch. 16.5 - The reaction of carbon monoxide with hydrogen to...Ch. 16.5 - Prob. 16.4PSPCh. 16.5 - Prob. 16.6CE
Ch. 16.5 - Prob. 16.8ECh. 16.6 - Prob. 16.9CECh. 16.6 - In the text we concluded that the reaction to...Ch. 16.6 - Prob. 16.10CECh. 16.6 - Prob. 16.6PSPCh. 16.7 - Prob. 16.7PSPCh. 16.7 - Prob. 16.8PSPCh. 16.7 - Prob. 16.9PSPCh. 16.8 - Predict whether each reaction is reactant-favored...Ch. 16.9 - Prob. 16.13ECh. 16.9 - Prob. 16.11PSPCh. 16.9 - Prob. 16.12PSPCh. 16.9 - Prob. 16.14ECh. 16.11 - All of these substances are stable with respect to...Ch. 16 - Define the terms product-favored System and...Ch. 16 - What are the two ways that a final chemical state...Ch. 16 - Define the term entropy, and give an example of a...Ch. 16 - Prob. 4QRTCh. 16 - Prob. 5QRTCh. 16 - Prob. 6QRTCh. 16 - Prob. 7QRTCh. 16 - Prob. 8QRTCh. 16 - Prob. 9QRTCh. 16 - Prob. 10QRTCh. 16 - Prob. 11QRTCh. 16 - Prob. 12QRTCh. 16 - Prob. 13QRTCh. 16 - Prob. 14QRTCh. 16 - Prob. 15QRTCh. 16 - Prob. 16QRTCh. 16 - Prob. 17QRTCh. 16 - Suppose you have four identical molecules labeled...Ch. 16 - For each process, tell whether the entropy change...Ch. 16 - Prob. 20QRTCh. 16 - For each situation described in Question 13,...Ch. 16 - Prob. 22QRTCh. 16 - Prob. 23QRTCh. 16 - Prob. 24QRTCh. 16 - Prob. 25QRTCh. 16 - Prob. 26QRTCh. 16 - Prob. 27QRTCh. 16 - Prob. 28QRTCh. 16 - Prob. 29QRTCh. 16 - Prob. 30QRTCh. 16 - Prob. 31QRTCh. 16 - Diethyl ether, (C2H5)2O, was once used as an...Ch. 16 - Calculate rS for each substance when the quantity...Ch. 16 - Prob. 34QRTCh. 16 - Prob. 35QRTCh. 16 - Check your predictions in Question 28 by...Ch. 16 - Prob. 37QRTCh. 16 - Prob. 38QRTCh. 16 - Prob. 39QRTCh. 16 - Prob. 40QRTCh. 16 - Prob. 41QRTCh. 16 - Prob. 42QRTCh. 16 - Prob. 43QRTCh. 16 - Prob. 44QRTCh. 16 - Prob. 45QRTCh. 16 - Prob. 46QRTCh. 16 - Hydrogen bums in air with considerable heat...Ch. 16 - Prob. 48QRTCh. 16 - Prob. 49QRTCh. 16 - Prob. 50QRTCh. 16 - Prob. 51QRTCh. 16 - The reaction of magnesium with water can be used...Ch. 16 - Prob. 53QRTCh. 16 - Prob. 54QRTCh. 16 - Prob. 55QRTCh. 16 - Prob. 56QRTCh. 16 - Prob. 57QRTCh. 16 - Prob. 58QRTCh. 16 - Prob. 59QRTCh. 16 - Prob. 60QRTCh. 16 - Prob. 61QRTCh. 16 - Estimate ΔrG° at 2000. K for each reaction in...Ch. 16 - Prob. 63QRTCh. 16 - Some metal oxides, such as lead(II) oxide, can be...Ch. 16 - Prob. 65QRTCh. 16 - Prob. 66QRTCh. 16 - Use data from Appendix J to obtain the equilibrium...Ch. 16 - Prob. 68QRTCh. 16 - Prob. 69QRTCh. 16 - Use the data in Appendix J to calculate rG andKPat...Ch. 16 - Prob. 71QRTCh. 16 - Prob. 72QRTCh. 16 - Prob. 73QRTCh. 16 - Prob. 74QRTCh. 16 - Prob. 75QRTCh. 16 - Prob. 76QRTCh. 16 - Prob. 77QRTCh. 16 - Prob. 78QRTCh. 16 - Prob. 79QRTCh. 16 - The molecular structure shown is of one form of...Ch. 16 - Another step in the metabolism of glucose, which...Ch. 16 - In muscle cells under the condition of vigorous...Ch. 16 - The biological oxidation of ethanol, C2H5OH, is...Ch. 16 - Prob. 86QRTCh. 16 - For one day, keep a log of all the activities you...Ch. 16 - Billions of pounds of acetic acid are made each...Ch. 16 - Determine the standard Gibbs free energy change,...Ch. 16 - There are millions of organic compounds known, and...Ch. 16 - Actually, the carbon in CO2(g) is...Ch. 16 - The standard molar entropy of methanol vapor,...Ch. 16 - The standard molar entropy of iodine vapor, I2(g),...Ch. 16 - Prob. 94QRTCh. 16 - Prob. 96QRTCh. 16 - Prob. 97QRTCh. 16 - Prob. 98QRTCh. 16 - Prob. 99QRTCh. 16 - Prob. 100QRTCh. 16 - Appendix J lists standard molar entropies S, not...Ch. 16 - When calculating rSfromSvalues, it is necessary to...Ch. 16 - Prob. 103QRTCh. 16 - Explain how the entropy of the universe increases...Ch. 16 - Prob. 105QRTCh. 16 - Prob. 106QRTCh. 16 - Prob. 107QRTCh. 16 - Prob. 108QRTCh. 16 - Prob. 109QRTCh. 16 - Reword the statement in Question 109 so that it is...Ch. 16 - Prob. 111QRTCh. 16 - Prob. 112QRTCh. 16 - Prob. 113QRTCh. 16 - Prob. 114QRTCh. 16 - Prob. 115QRTCh. 16 - Prob. 116QRTCh. 16 - From data in Appendix J, estimate (a) the boiling...Ch. 16 - Prob. 118QRTCh. 16 - Prob. 119QRTCh. 16 - Prob. 120QRTCh. 16 - Prob. 121QRTCh. 16 - Prob. 122QRTCh. 16 - Prob. 123QRTCh. 16 - Prob. 124QRTCh. 16 - Prob. 125QRTCh. 16 - Prob. 126QRTCh. 16 - The standard equilibrium constant is 2.1109for...Ch. 16 - Prob. 16.ACPCh. 16 - Prob. 16.CCPCh. 16 - Prob. 16.DCPCh. 16 - Consider planet Earth as a thermodynamic system....
Knowledge Booster
Similar questions
- Actually, the carbon in CO2(g) is thermodynamically unstable with respect to the carbon in calcium carbonate(limestone). Verify this by determining the standardGibbs free energy change for the reaction of lime,CaO(s), with CO2(g) to make CaCO3(s).arrow_forwardDetermine the standard Gibbs free energy change, rG, for the reactions of liquid methanol, of CO(g), and ofethyne, C2H2(g), with oxygen gas to form gaseous carbondioxide and (if hydrogen is present) liquid water at298 K. Use your calculations to decide which of thesesubstances are kinetically stable and which are thermodynamically stable: CH3OH(), CO(g), C2H9(g), CO2(g),H2O().arrow_forwardPredict whether each reaction is reactant-favored or product-favored at 298 K and 1 bar, and calculate the minimum work that would have to be done to force it to occur, or the maximum work that could be done by the reaction. (a) 2 CO2(g) 2 CO(g) + O2(g) (b) 4 Fe(s) + 3 O2(g) 2 Fe2O3(s)arrow_forward
- In an experiment to determine the calorific value of a food, a sample of the food was burned in an oxygen atmosphere and the temperature rose by 2.89 °c. When a current of 1.27 A from a 12.5 V source flowed through the samecalorimeter for 157 s. the temperature rose by 3.88 °c. What energy is released as heat by the combustion?arrow_forwardwrite the fundamental equation of chemical thermodynamics for a system that contains 1.0 mole of N2 and 1.0 mole of O2arrow_forward(a) An ideal gas of mass 4.5 g and molar mass of 17 g.mole-1 occupies 12.7 L at 310 K. Answer the following questions based on the conditions presented. (i) Calculate the work done under a constant external pressure of 30 kPa until the volume of gas has increased by 3.3 L. (ii) Calculate the work done in an isothermal and reversible expansion process resulting in a final volume of 16L. (iii) If the gas has a molar heat capacity of 30.8 J.mol-1.K-1 and is subjected to a constant volume process until it reaches a temperature of 350K, calculate the heat transfer in kJ.mol-1 of the gas. (b) Calculate the standard enthalpy of formation of N2O5 (g) from N2 (g) and O2 (g), in kJ. mol-1, from the following data: 2NO(g) + O2(g) ® 2NO2(g) DH = -114.1 kJ 4NO2(g) + O2(g) ® 2N2O5(g) DH = -110.2 kJ N2(g) + O2(g) ® 2NO(g) DH = +180.5 kJarrow_forward
- What is the standard heat of reaction at 800 °C for complete combustion of liquid ethanol to carbon dioxide and liquid water?arrow_forwardIn preparation for a study of the metabolism of an organism, a small, sealed calorimeter was prepared. In the initial phase of the experiment, a current of 22.22 mA from an 11.8 V source was passed for 162 s through a heater insidethe calorimeter. What is the change in internal energy of the calorimeter?arrow_forwardcalculate the Gibbs free energy of formation of BiF5 at 298 K. Is the formation of BiF5 from the elements spontaneous?arrow_forward
- Make a non-spontaneous process spontaneous A process that is nonspontaneous can be made spontaneous by coupling it with another process tha is highly spontaneous. The coupling of nonspontaneous reactions with highly spontaneous ones is important in biological system. The oxidization of glucose, for example, is highly spontaneous: C6H12O6(s) + 60₂(g) → 6 CO₂(g) + 6 H₂O(1) Spontaneous reactions such as this ultimately drive the nonspontaneous reactions necessary to sustain life. Can you use Gibbs free energy, enthalpy, and entropy to argue this reaction is highly spontaneous?arrow_forwardGibbs free energy (G) is a measure of the spontaneity of a chemical reaction. It is the chemical potential for a reaction, and is minimized at equilibrium. It is defined as G=H-TS where H is enthalpy, T is temperature, and S is entropy. The chemical reaction that causes magnesium to corrode in air is given by 2Mg + O2-2MgO in which at 298 K, AH = 1204 kJ and AS = -217.1 J/K. - Part B What is the Gibbs free energy for this reaction at 5958 K? Assume that AH and AS do not change with temperature. Express your answer to two decimal places and include the appropriate units. ► View Available Hint(s) AGrxn= O μÅ Value Units ?arrow_forward1.1 mole of O₂ (g) and 2.2 moles of N₂ (g) are spontaneously mixed in a cylinder (volume = 30.0 L) with a movable piston. Assume both gases are ideal. (a) Explain why the mixing of O₂ and N₂ gases is spontaneous in term of chemical potential. (b) Calculate the final pressure (in N m2) of mixture when (i) the mixing occurs isothermally at 298 K; (ii) the initial temperatures of O₂ (g) and N₂ (g) are 306 K and 367 K, respectively, and after mixing, the temperature is equilibrated. State any assumption(s) in your calculations. (c) ) Now, the mixture in (b)(ii) is expanded isothermally and the external pressure is suddenly decreased to a final pressure of 890 Torr, determine whether the process is reversible or not.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning