Chemistry: The Molecular Science
Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 16, Problem 105QRT

(a)

Interpretation Introduction

Interpretation:

Whether the statement “the enthalpy change for the reaction is zero” is true or false has to be stated.

Concept Introduction:

The standard enthalpy of formation that is ΔfH° is the enthalpy of formation for a reaction which involves formation of one mole of product from pure reactants in their standard states at a particular temperature.  The standard enthalpies of formations are used for estimating the enthalpy of a reaction.

(b)

Interpretation Introduction

Interpretation:

Whether the statement “the entropy change for the reaction is zero” is true or false has to be stated.

Concept Introduction:

The term entropy is used to represent the randomness in a system.  When a system moves from an ordered arrangement to a less ordered arrangement, then the entropy of the system increases.  The second law of thermodynamics state that “the entropy of the system either increases or remains the same.”

(c)

Interpretation Introduction

Interpretation:

Whether the statement “the Gibbs free energy change for the reaction is zero” is true or false has to be stated.

Concept Introduction:

The Gibbs free energy of a system is directly related to the equilibrium constant of a reaction.  The Gibbs free energy of a system is defined as the enthalpy of the system minus the product of the temperature times the entropy of the system.  The Gibbs free energy of the system is a state function as it is defined in terms of thermodynamic properties that are state functions.  The symbol for equilibrium constant is KP.

(d)

Interpretation Introduction

Interpretation:

Whether the statement “the ΔrH° and ΔrS° have the same sign” is true or false has to be stated.

Concept Introduction:

The Gibbs free energy of a system is defined as the enthalpy of the system minus the product of the temperature times the entropy of the system.  The Gibbs free energy of the system is a state function as it is defined in terms of thermodynamic properties that are state functions.

(e)

Interpretation Introduction

Interpretation:

Whether the statement “the ΔrH°/T=ΔrS° at temperature T” is true or false has to be stated.

Concept Introduction:

The randomness present in the system is known as its entropy.  It is an extensive property.  At equilibrium, the entropy of the system is zero.  It is denoted by S.  The entropy that is measured under the standard conditions of temperature is known as standard entropy.  The standard entropy change is denoted by ΔS°.

Blurred answer
Students have asked these similar questions
5.) Indicate whether each statement is true of false? (a) The second law of thermodynamics says that entropy is conserved. (b) If the entropy of the system increases during a reversible process, the entropy change of the surroundings must decrease by the same amount. (c) In a certain spontaneous process the system undergoes an entropy change of 4.2 J/ K; therefore, the entropy change of the surroundings must be -4.2 J/K. Group of answer choices A.) (a) false (b) true (c) false B.) (a) false (b) true (c) true C.) (a) false (b) false (c) false D.) (a) true (b) false (c) true
Assuming that neither standard enthalpy changes of formations (∆Hof)  nor standard molar entropies (So) depend upon temperature, estimate using the Table of Thermodynamic Data : (a) the standard Gibbs free energy change for the reaction that forms rhombic sulfur at 600 K, and (b) the temperature (in oC) at which reaction will stop  formation of products:   2H2S(g) + SO2(g) → 3S(rhombic, s) + 2H2O(g)  Round off your answers to the nearest integer. Report the temperature in oC. and enter them with correct units:  (a)∆Gorxn = (b) T =
Calculate the equilibrium constant for the following reaction at 25o C, given that change in standard Gibbs free energy (f) of O3 (g) is 163.4 kJ/mol. 2O3(g)  -> 3O2(g)

Chapter 16 Solutions

Chemistry: The Molecular Science

Ch. 16.5 - Prob. 16.8ECh. 16.6 - Prob. 16.9CECh. 16.6 - In the text we concluded that the reaction to...Ch. 16.6 - Prob. 16.10CECh. 16.6 - Prob. 16.6PSPCh. 16.7 - Prob. 16.7PSPCh. 16.7 - Prob. 16.8PSPCh. 16.7 - Prob. 16.9PSPCh. 16.8 - Predict whether each reaction is reactant-favored...Ch. 16.9 - Prob. 16.13ECh. 16.9 - Prob. 16.11PSPCh. 16.9 - Prob. 16.12PSPCh. 16.9 - Prob. 16.14ECh. 16.11 - All of these substances are stable with respect to...Ch. 16 - Define the terms product-favored System and...Ch. 16 - What are the two ways that a final chemical state...Ch. 16 - Define the term entropy, and give an example of a...Ch. 16 - Prob. 4QRTCh. 16 - Prob. 5QRTCh. 16 - Prob. 6QRTCh. 16 - Prob. 7QRTCh. 16 - Prob. 8QRTCh. 16 - Prob. 9QRTCh. 16 - Prob. 10QRTCh. 16 - Prob. 11QRTCh. 16 - Prob. 12QRTCh. 16 - Prob. 13QRTCh. 16 - Prob. 14QRTCh. 16 - Prob. 15QRTCh. 16 - Prob. 16QRTCh. 16 - Prob. 17QRTCh. 16 - Suppose you have four identical molecules labeled...Ch. 16 - For each process, tell whether the entropy change...Ch. 16 - Prob. 20QRTCh. 16 - For each situation described in Question 13,...Ch. 16 - Prob. 22QRTCh. 16 - Prob. 23QRTCh. 16 - Prob. 24QRTCh. 16 - Prob. 25QRTCh. 16 - Prob. 26QRTCh. 16 - Prob. 27QRTCh. 16 - Prob. 28QRTCh. 16 - Prob. 29QRTCh. 16 - Prob. 30QRTCh. 16 - Prob. 31QRTCh. 16 - Diethyl ether, (C2H5)2O, was once used as an...Ch. 16 - Calculate rS for each substance when the quantity...Ch. 16 - Prob. 34QRTCh. 16 - Prob. 35QRTCh. 16 - Check your predictions in Question 28 by...Ch. 16 - Prob. 37QRTCh. 16 - Prob. 38QRTCh. 16 - Prob. 39QRTCh. 16 - Prob. 40QRTCh. 16 - Prob. 41QRTCh. 16 - Prob. 42QRTCh. 16 - Prob. 43QRTCh. 16 - Prob. 44QRTCh. 16 - Prob. 45QRTCh. 16 - Prob. 46QRTCh. 16 - Hydrogen bums in air with considerable heat...Ch. 16 - Prob. 48QRTCh. 16 - Prob. 49QRTCh. 16 - Prob. 50QRTCh. 16 - Prob. 51QRTCh. 16 - The reaction of magnesium with water can be used...Ch. 16 - Prob. 53QRTCh. 16 - Prob. 54QRTCh. 16 - Prob. 55QRTCh. 16 - Prob. 56QRTCh. 16 - Prob. 57QRTCh. 16 - Prob. 58QRTCh. 16 - Prob. 59QRTCh. 16 - Prob. 60QRTCh. 16 - Prob. 61QRTCh. 16 - Estimate ΔrG° at 2000. K for each reaction in...Ch. 16 - Prob. 63QRTCh. 16 - Some metal oxides, such as lead(II) oxide, can be...Ch. 16 - Prob. 65QRTCh. 16 - Prob. 66QRTCh. 16 - Use data from Appendix J to obtain the equilibrium...Ch. 16 - Prob. 68QRTCh. 16 - Prob. 69QRTCh. 16 - Use the data in Appendix J to calculate rG andKPat...Ch. 16 - Prob. 71QRTCh. 16 - Prob. 72QRTCh. 16 - Prob. 73QRTCh. 16 - Prob. 74QRTCh. 16 - Prob. 75QRTCh. 16 - Prob. 76QRTCh. 16 - Prob. 77QRTCh. 16 - Prob. 78QRTCh. 16 - Prob. 79QRTCh. 16 - The molecular structure shown is of one form of...Ch. 16 - Another step in the metabolism of glucose, which...Ch. 16 - In muscle cells under the condition of vigorous...Ch. 16 - The biological oxidation of ethanol, C2H5OH, is...Ch. 16 - Prob. 86QRTCh. 16 - For one day, keep a log of all the activities you...Ch. 16 - Billions of pounds of acetic acid are made each...Ch. 16 - Determine the standard Gibbs free energy change,...Ch. 16 - There are millions of organic compounds known, and...Ch. 16 - Actually, the carbon in CO2(g) is...Ch. 16 - The standard molar entropy of methanol vapor,...Ch. 16 - The standard molar entropy of iodine vapor, I2(g),...Ch. 16 - Prob. 94QRTCh. 16 - Prob. 96QRTCh. 16 - Prob. 97QRTCh. 16 - Prob. 98QRTCh. 16 - Prob. 99QRTCh. 16 - Prob. 100QRTCh. 16 - Appendix J lists standard molar entropies S, not...Ch. 16 - When calculating rSfromSvalues, it is necessary to...Ch. 16 - Prob. 103QRTCh. 16 - Explain how the entropy of the universe increases...Ch. 16 - Prob. 105QRTCh. 16 - Prob. 106QRTCh. 16 - Prob. 107QRTCh. 16 - Prob. 108QRTCh. 16 - Prob. 109QRTCh. 16 - Reword the statement in Question 109 so that it is...Ch. 16 - Prob. 111QRTCh. 16 - Prob. 112QRTCh. 16 - Prob. 113QRTCh. 16 - Prob. 114QRTCh. 16 - Prob. 115QRTCh. 16 - Prob. 116QRTCh. 16 - From data in Appendix J, estimate (a) the boiling...Ch. 16 - Prob. 118QRTCh. 16 - Prob. 119QRTCh. 16 - Prob. 120QRTCh. 16 - Prob. 121QRTCh. 16 - Prob. 122QRTCh. 16 - Prob. 123QRTCh. 16 - Prob. 124QRTCh. 16 - Prob. 125QRTCh. 16 - Prob. 126QRTCh. 16 - The standard equilibrium constant is 2.1109for...Ch. 16 - Prob. 16.ACPCh. 16 - Prob. 16.CCPCh. 16 - Prob. 16.DCPCh. 16 - Consider planet Earth as a thermodynamic system....
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY