Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 16, Problem 58QRT
Interpretation Introduction
Interpretation:
The value of
Concept Introduction:
The term entropy is used to represent the randomness in a system. When a system moves from an ordered arrangement to a less order arrangement, then the entropy of the system increases. The second law of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1)State the First Law of Thermodynamics.
2)Fluorine (F2) and iodine (I2) are both Group 17 elements. Explain with reference to intermolecular forces, why fluorine is a gas and iodine is a solid at room temperature.
4)When 30 g of ammonium nitrate, (NH4NO3) was stirred into 10 cm3 of water, the temperature fell from 21 oC to 15 oC.
5)Calculate the total amount of energy (E) released in this experiment. Ignore the heat capacity of ammonium nitrate. Take the specific heat capacity of the water as 4.18 J g-1 ºC-1. Density of water is 1.00 gcm-3.
6)This amount of energy [answer to part (i)] was produced by 30 g of ammonium nitrate. Calculate the energy change per mole of ammonium nitrate. Include the correct sign for…
A student dissolves 13.0 g of ammonium nitrate (NH4NO3) in 300. g of water in a well-insulated open cup. She then observes the
temperature of the water fall from 21.0 °C to 16.5 °C over the course of 3.3 minutes.
Use this data, and any information you need from the ALEKS Data resource, to answer the questions below about this reaction:
NH₂NO₂ (s) NH+ (aq) + NO3(aq)
You can make any reasonable assumptions about the physical properties of the solution. Be sure answers you calculate using measured data
are rounded to the correct number of significant digits.
Note for advanced students: it's possible the student did not do the experiment carefully, and the values you calculate may not be the same
as the known and published values for this reaction.
Is this reaction exothermic, endothermic, or neither?
If you said the reaction was exothermic or endothermic, calculate the amount of
heat that was released or absorbed by the reaction in this case.
Calculate the reaction enthalpy ΔΗ. per mole…
In the Haber process, ammonia is synthesized from nitrogen and
hydrogen:
N2(8) + 3H2(g) → 2NH3(g)
AG° at 298 K for this reaction is -33.3 kJ/mol. The value of AG at
298 K for a reaction mixture that consists of 1.9 atm N2, 1.6 atm H2,
and 0.65 atm NH3 is
O -1.8
O -104.5
O-3.86 x 103
O-7.25 x 10
-40.5
Chapter 16 Solutions
Chemistry: The Molecular Science
Ch. 16.1 - Write a chemical equation for each process and...Ch. 16.2 - Prob. 16.2CECh. 16.3 - A chemical reaction transfers 30.8 kJ to a thermal...Ch. 16.3 - Prob. 16.3CECh. 16.3 - Prob. 16.2PSPCh. 16.3 - For each process, predict whether entropy...Ch. 16.4 - Calculate the entropy change for each of these...Ch. 16.5 - The reaction of carbon monoxide with hydrogen to...Ch. 16.5 - Prob. 16.4PSPCh. 16.5 - Prob. 16.6CE
Ch. 16.5 - Prob. 16.8ECh. 16.6 - Prob. 16.9CECh. 16.6 - In the text we concluded that the reaction to...Ch. 16.6 - Prob. 16.10CECh. 16.6 - Prob. 16.6PSPCh. 16.7 - Prob. 16.7PSPCh. 16.7 - Prob. 16.8PSPCh. 16.7 - Prob. 16.9PSPCh. 16.8 - Predict whether each reaction is reactant-favored...Ch. 16.9 - Prob. 16.13ECh. 16.9 - Prob. 16.11PSPCh. 16.9 - Prob. 16.12PSPCh. 16.9 - Prob. 16.14ECh. 16.11 - All of these substances are stable with respect to...Ch. 16 - Define the terms product-favored System and...Ch. 16 - What are the two ways that a final chemical state...Ch. 16 - Define the term entropy, and give an example of a...Ch. 16 - Prob. 4QRTCh. 16 - Prob. 5QRTCh. 16 - Prob. 6QRTCh. 16 - Prob. 7QRTCh. 16 - Prob. 8QRTCh. 16 - Prob. 9QRTCh. 16 - Prob. 10QRTCh. 16 - Prob. 11QRTCh. 16 - Prob. 12QRTCh. 16 - Prob. 13QRTCh. 16 - Prob. 14QRTCh. 16 - Prob. 15QRTCh. 16 - Prob. 16QRTCh. 16 - Prob. 17QRTCh. 16 - Suppose you have four identical molecules labeled...Ch. 16 - For each process, tell whether the entropy change...Ch. 16 - Prob. 20QRTCh. 16 - For each situation described in Question 13,...Ch. 16 - Prob. 22QRTCh. 16 - Prob. 23QRTCh. 16 - Prob. 24QRTCh. 16 - Prob. 25QRTCh. 16 - Prob. 26QRTCh. 16 - Prob. 27QRTCh. 16 - Prob. 28QRTCh. 16 - Prob. 29QRTCh. 16 - Prob. 30QRTCh. 16 - Prob. 31QRTCh. 16 - Diethyl ether, (C2H5)2O, was once used as an...Ch. 16 - Calculate rS for each substance when the quantity...Ch. 16 - Prob. 34QRTCh. 16 - Prob. 35QRTCh. 16 - Check your predictions in Question 28 by...Ch. 16 - Prob. 37QRTCh. 16 - Prob. 38QRTCh. 16 - Prob. 39QRTCh. 16 - Prob. 40QRTCh. 16 - Prob. 41QRTCh. 16 - Prob. 42QRTCh. 16 - Prob. 43QRTCh. 16 - Prob. 44QRTCh. 16 - Prob. 45QRTCh. 16 - Prob. 46QRTCh. 16 - Hydrogen bums in air with considerable heat...Ch. 16 - Prob. 48QRTCh. 16 - Prob. 49QRTCh. 16 - Prob. 50QRTCh. 16 - Prob. 51QRTCh. 16 - The reaction of magnesium with water can be used...Ch. 16 - Prob. 53QRTCh. 16 - Prob. 54QRTCh. 16 - Prob. 55QRTCh. 16 - Prob. 56QRTCh. 16 - Prob. 57QRTCh. 16 - Prob. 58QRTCh. 16 - Prob. 59QRTCh. 16 - Prob. 60QRTCh. 16 - Prob. 61QRTCh. 16 - Estimate ΔrG° at 2000. K for each reaction in...Ch. 16 - Prob. 63QRTCh. 16 - Some metal oxides, such as lead(II) oxide, can be...Ch. 16 - Prob. 65QRTCh. 16 - Prob. 66QRTCh. 16 - Use data from Appendix J to obtain the equilibrium...Ch. 16 - Prob. 68QRTCh. 16 - Prob. 69QRTCh. 16 - Use the data in Appendix J to calculate rG andKPat...Ch. 16 - Prob. 71QRTCh. 16 - Prob. 72QRTCh. 16 - Prob. 73QRTCh. 16 - Prob. 74QRTCh. 16 - Prob. 75QRTCh. 16 - Prob. 76QRTCh. 16 - Prob. 77QRTCh. 16 - Prob. 78QRTCh. 16 - Prob. 79QRTCh. 16 - The molecular structure shown is of one form of...Ch. 16 - Another step in the metabolism of glucose, which...Ch. 16 - In muscle cells under the condition of vigorous...Ch. 16 - The biological oxidation of ethanol, C2H5OH, is...Ch. 16 - Prob. 86QRTCh. 16 - For one day, keep a log of all the activities you...Ch. 16 - Billions of pounds of acetic acid are made each...Ch. 16 - Determine the standard Gibbs free energy change,...Ch. 16 - There are millions of organic compounds known, and...Ch. 16 - Actually, the carbon in CO2(g) is...Ch. 16 - The standard molar entropy of methanol vapor,...Ch. 16 - The standard molar entropy of iodine vapor, I2(g),...Ch. 16 - Prob. 94QRTCh. 16 - Prob. 96QRTCh. 16 - Prob. 97QRTCh. 16 - Prob. 98QRTCh. 16 - Prob. 99QRTCh. 16 - Prob. 100QRTCh. 16 - Appendix J lists standard molar entropies S, not...Ch. 16 - When calculating rSfromSvalues, it is necessary to...Ch. 16 - Prob. 103QRTCh. 16 - Explain how the entropy of the universe increases...Ch. 16 - Prob. 105QRTCh. 16 - Prob. 106QRTCh. 16 - Prob. 107QRTCh. 16 - Prob. 108QRTCh. 16 - Prob. 109QRTCh. 16 - Reword the statement in Question 109 so that it is...Ch. 16 - Prob. 111QRTCh. 16 - Prob. 112QRTCh. 16 - Prob. 113QRTCh. 16 - Prob. 114QRTCh. 16 - Prob. 115QRTCh. 16 - Prob. 116QRTCh. 16 - From data in Appendix J, estimate (a) the boiling...Ch. 16 - Prob. 118QRTCh. 16 - Prob. 119QRTCh. 16 - Prob. 120QRTCh. 16 - Prob. 121QRTCh. 16 - Prob. 122QRTCh. 16 - Prob. 123QRTCh. 16 - Prob. 124QRTCh. 16 - Prob. 125QRTCh. 16 - Prob. 126QRTCh. 16 - The standard equilibrium constant is 2.1109for...Ch. 16 - Prob. 16.ACPCh. 16 - Prob. 16.CCPCh. 16 - Prob. 16.DCPCh. 16 - Consider planet Earth as a thermodynamic system....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Use the appropriate tables to calculate H for (a) the reaction between copper(II) oxide and carbon monoxide to give copper metal and carbon dioxide. (b) the decomposition of one mole of methyl alcohol (CH3OH) to methane and oxygen gases.arrow_forwardThe major industrial use of hydrogen is in the production of ammonia by the Haber process: 3H2(g)+N2(g)2NH3(g) a. Using data from Appendix 4, calculate H, S, and G for the Haber process reaction. b. Is the reaction spontaneous at standard conditions? c. At what temperatures is the reaction spontaneous at standard conditions? Assume H and S do not depend on temperature.arrow_forwarda Calculate K1, at 25C for phosphoric acid: H3PO4(aq)H+(aq)+H2PO4(aq) b Which thermodynamic factor is the most significant in accounting for the fact that phosphoric acid is a weak acid? Why ?arrow_forward
- Using values of fH and S, calculate the standard molar free energy of formation, fG, for each of the following: (a) Ca(OH)2(s) (b) Cl(g) (c) Na2CO3(s) Compare your calculated values of fG with those listed in Appendix L. Which of these formation reactions are predicted to be product-favored at equilibrium at 25 C?arrow_forwardFrom these data, calculate the value of ΔH° for the reaction.arrow_forwardCalculate the equilibrium constant for the following reaction at 25 degree Celcious, given that ΔG^ o (f) of O3(g) is 163.4 kJ/mol. 2O3(g)→3O2(g)arrow_forward
- Ammonia can be produced by the reaction of hydrogen gas and nitrogen gas, as shown below: N2(g) + 3H2(g) → 2NH3(g) Given that the standard free energy of formation of NH3 (g) is -104 kJ/mol at 298 K, calculate the equilibrium constant, K, at this temperature. To express an answer in exponential notation, use E to indicate the exponent. For example, 3.0 x 103 would be written, 3.0E3.arrow_forwardA crucial reaction for the production of synthetic fuels is the production of H2 by reaction of coal with steam, The reaction is: C(s) + H2O(g) ↔ CO(g) + H2(g) Calculate the equilibrium constant for this reaction at 850°C.arrow_forwardCalculating non-standard free energy (G)arrow_forward
- In a study of glass etching, a chemist examines the reaction between sand (Sio2) and hydrogen fluoride at 150°c (given by the reaction below). Predict the effect on [SIF4] when (a) H2O(g) is removed; (b) some liquid water is added; (c) HF is removed; (d) some sand is removed. SiO2(s) + 4HF(g) = SiF,(g) + 2H2O(g) O (a) decreases; (b) decreases ; (c) decreases ; (d) no effect O (a) increases; (b) decreases ; (c) decreases ; (d) no effect O (a) increases; (b) increases; (c) decreases; (d) no effect (a) no effect; (b) decreases; (c) decreases ; (d) no effectarrow_forwardThe standard free energy of formation of nitric oxide, NO, at 1000. K (roughly the temperature in an automobile engine during ignition) is 77.5 kJ/mol. Calculate the equilibrium constant for the reaction N2(g) + O2(g) = 2NO(g) at 1000. K. O 1.55 x 105 O -14.6 8.00 x 10-9 0.948 8.95 x 10-5arrow_forwardNitrate salts are generally soluble, but as you have learned, nothing has infinite solubility. Barrium nitrate is one of the least soluble nitrate salts. Consider the following data: Ba2+(aq) ΔGf° = –561 kJ/mol NO3 – (aq) ΔGf° = –109 kJ/mol Ba(NO3)2(s) ΔGf° = –797 kJ/mol Use the above data to calculate the maximum solubility (in g/L) of Ba(NO3)2 in water under STParrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY