MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
4th Edition
ISBN: 9781266368622
Author: NEAMEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 16, Problem D16.28P
(a)
To determine
To design: The NMOS depletion logic circuit with depletion load to perform the function.
(b)
To determine
The value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Design the following combinational logic circuit with a
four-bit input and a three-bit output. The input
represents two unsigned 2-bit numbers: A1 A0 and B1
B0. The output C2 C1.C0 is the result of the integer
binary division A1 A0/B1 B0 rounded down to three
bits. The 3-bit output has a 2-bit unsigned whole part
C2 C1 and a fraction part CO. The weight of the fraction
bit CO is 21. Note the quotient should be rounded
down, i.e. the division 01/11 should give the outputs
00.0 (1/3 rounded down to 0) not 00.1 (1/3 rounded up
to 0.5). A result of infinity should be represented as
11.1. A minimal logic implementation is not required.
(Hint: start by producing a truth table of your design).
Consider the circuit below. The switches are controlled by
logic variables such that, if A is high, switch A is closed,
and if A is low, switch A is open. Conversely, if B is high,
the switch labeled is open, and if B is low, the switch
labeled is closed. The output variable is high if the output
voltage is 5V, and the output variable is low if the output
voltage is zero.
a. Write a logic expression for the output variable.
b. Construct the truth table for the circuit.
A
Logic 1
5V(+
B
C
Logic 0
R
1digtal
Chapter 16 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
Ch. 16 - Consider the NMOS inverter with resistor load in...Ch. 16 - The enhancementload NMOS inverter in Figure...Ch. 16 - Prob. 16.3EPCh. 16 - Prob. 16.4EPCh. 16 - Consider the NMOS inverter with enhancement load,...Ch. 16 - Prob. 16.2TYUCh. 16 - (a) Consider the results of Exercise Ex 16.1....Ch. 16 - Prob. 16.5EPCh. 16 - Prob. 16.6EPCh. 16 - (a) Design a threeinput NMOS NOR Logic gate with...
Ch. 16 - Consider the NMOS logic circuit in Figure 16.18....Ch. 16 - Repeat Exercise TYU 16.5 for the NMOS logic...Ch. 16 - The CMOS inverter in Figure 16.21 is biased at...Ch. 16 - swA CMOS inverter is biased at VDD=3V . The...Ch. 16 - A CMOS inverter is biased at VDD=1.8V . The...Ch. 16 - Prob. 16.7TYUCh. 16 - Repeat Exercise Ex 16.9 for a CMOS inverter biased...Ch. 16 - Determine the transistor sizes of a 3input CMOS...Ch. 16 - Design the widthtolength ratios of the transistors...Ch. 16 - Design a static CMOS logic circuit that implements...Ch. 16 - Prob. 16.10TYUCh. 16 - Prob. 16.11TYUCh. 16 - Sketch a clocked CMOS logic circuit that realizes...Ch. 16 - Prob. 16.12EPCh. 16 - Prob. 16.13TYUCh. 16 - Consider the CMOS transmission gate in Figure...Ch. 16 - Prob. 16.15TYUCh. 16 - Prob. 16.14EPCh. 16 - Prob. 16.16TYUCh. 16 - Prob. 16.17TYUCh. 16 - Sketch the quasistatic voltage transfer...Ch. 16 - Sketch an NMOS threeinput NOR logic gate. Describe...Ch. 16 - Discuss how more sophisticated (compared to the...Ch. 16 - Sketch the quasistatic voltage transfer...Ch. 16 - Discuss the parameters that affect the switching...Ch. 16 - Prob. 6RQCh. 16 - Sketch a CMOS threeinput NAND logic gate. Describe...Ch. 16 - sDiscuss how more sophisticated (compared to the...Ch. 16 - Prob. 9RQCh. 16 - Sketch an NMOS transmission gate and describe its...Ch. 16 - Sketch a CMOS transmission gate and describe its...Ch. 16 - Discuss what is meant by pass transistor logic.Ch. 16 - Prob. 13RQCh. 16 - Prob. 14RQCh. 16 - Prob. 15RQCh. 16 - Describe the basic architecture of a semiconductor...Ch. 16 - ‘Sketch a CMOS SRAM cell and describe its...Ch. 16 - Prob. 18RQCh. 16 - Describe a maskprogrammed MOSFET ROM memory.Ch. 16 - Describe the basic operation of a floating gate...Ch. 16 - Prob. 16.1PCh. 16 - Prob. 16.2PCh. 16 - (a) Redesign the resistive load inverter in Figure...Ch. 16 - Prob. D16.4PCh. 16 - Prob. 16.5PCh. 16 - Prob. D16.6PCh. 16 - Prob. 16.7PCh. 16 - Prob. 16.8PCh. 16 - For the depletion load inverter shown in Figure...Ch. 16 - Prob. 16.10PCh. 16 - Prob. D16.11PCh. 16 - Prob. D16.12PCh. 16 - Prob. 16.13PCh. 16 - For the two inverters in Figure P16.14, assume...Ch. 16 - Prob. 16.15PCh. 16 - Prob. 16.16PCh. 16 - Prob. 16.17PCh. 16 - Prob. 16.18PCh. 16 - Prob. D16.19PCh. 16 - Prob. 16.20PCh. 16 - Prob. 16.21PCh. 16 - Prob. 16.22PCh. 16 - In the NMOS circuit in Figure P16.23, the...Ch. 16 - Prob. 16.24PCh. 16 - Prob. 16.25PCh. 16 - Prob. 16.26PCh. 16 - What is the logic function implemented by the...Ch. 16 - Prob. D16.28PCh. 16 - Prob. D16.29PCh. 16 - Prob. 16.31PCh. 16 - Prob. 16.32PCh. 16 - Prob. 16.33PCh. 16 - Consider the CMOS inverter pair in Figure P16.34....Ch. 16 - Prob. 16.35PCh. 16 - Prob. 16.36PCh. 16 - Prob. 16.37PCh. 16 - Prob. 16.38PCh. 16 - Prob. 16.39PCh. 16 - (a) A CMOS digital logic circuit contains the...Ch. 16 - Prob. 16.41PCh. 16 - Prob. 16.42PCh. 16 - Prob. 16.43PCh. 16 - Prob. 16.44PCh. 16 - Prob. 16.45PCh. 16 - Prob. 16.46PCh. 16 - Prob. 16.47PCh. 16 - Prob. 16.48PCh. 16 - Prob. 16.49PCh. 16 - Prob. 16.50PCh. 16 - Prob. 16.51PCh. 16 - Prob. 16.52PCh. 16 - Prob. D16.53PCh. 16 - Figure P16.54 is a classic CMOS logic gate. (a)...Ch. 16 - Figure P16.55 is a classic CMOS logic gate. (a)...Ch. 16 - Consider the classic CMOS logic circuit in Figure...Ch. 16 - (a) Given inputs A,B,C,A,B and C , design a CMOS...Ch. 16 - (a) Given inputs A, B, C, D, and E, design a CMOS...Ch. 16 - (a) Determine the logic function performed by the...Ch. 16 - Prob. D16.60PCh. 16 - Prob. 16.61PCh. 16 - Prob. 16.62PCh. 16 - Sketch a clocked CMOS domino logic circuit that...Ch. 16 - Sketch a clocked CMOS domino logic circuit that...Ch. 16 - Prob. D16.65PCh. 16 - Prob. 16.66PCh. 16 - Prob. 16.67PCh. 16 - The NMOS transistors in the circuit shown in...Ch. 16 - Prob. 16.69PCh. 16 - Prob. 16.70PCh. 16 - Prob. 16.71PCh. 16 - (a) Design an NMOS pass transistor logic circuit...Ch. 16 - Prob. 16.73PCh. 16 - What is the logic function implemented by the...Ch. 16 - Prob. 16.75PCh. 16 - Prob. 16.76PCh. 16 - Prob. 16.77PCh. 16 - Consider the NMOS RS flipflop in Figure 16.63...Ch. 16 - Prob. 16.79PCh. 16 - Consider the circuit in Figure P16.80. Determine...Ch. 16 - Prob. D16.81PCh. 16 - Prob. 16.82PCh. 16 - Prob. 16.83PCh. 16 - Prob. 16.84PCh. 16 - (a) A 1 megabit memory is organized in a square...Ch. 16 - Prob. 16.86PCh. 16 - Prob. 16.87PCh. 16 - Prob. 16.88PCh. 16 - Prob. D16.89PCh. 16 - Prob. 16.90PCh. 16 - Prob. 16.91PCh. 16 - Prob. 16.92PCh. 16 - Prob. D16.93PCh. 16 - Prob. D16.94PCh. 16 - Prob. D16.95PCh. 16 - An analog signal in the range 0 to 5 V is to be...Ch. 16 - Prob. 16.97PCh. 16 - Prob. 16.98PCh. 16 - Prob. 16.99PCh. 16 - The weightedresistor D/A converter in Figure 16.90...Ch. 16 - The Nbit D/A converter with an R2R ladder network...Ch. 16 - Prob. 16.102PCh. 16 - Prob. 16.103PCh. 16 - Prob. 16.104PCh. 16 - Prob. 16.105PCh. 16 - Design a classic CMOS logic circuit that will...Ch. 16 - Prob. D16.111DPCh. 16 - Prob. D16.112DPCh. 16 - Prob. D16.113DP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Palagiaph 1. Find logic finctions for the circuits shown below. Farrow_forwardUse any digital logic simulator Fill-in the blank boxes with the correct LOGIC GATE/ Full/Half Adderarrow_forward9. Design a combinational logic circuit: to convert Excess 3 (3-12) to BCD code (0-9). Note: Assume don't cares (X) wherever necessary in the simplification processarrow_forward
- It's for digital logic design.arrow_forwardWrite a VHDL program to implement the combinational logic circuit in the following figure. HA A>B A>E B The circuit contains three input signals r, q and s, and one output sigal z. All signals are 1 bit only. In the circuit, there are two 2-to-1 multiplexers and two 2-input comparators. The two comparators should be implemented using component.arrow_forward4arrow_forward
- 2.1 Combinational logic circuits. Tabulates a truth table for the following Boolean expression shown in Equation 1.1. f = A.B.C + A.B.C + A.B.C (1.1) 2.2 Half adder. A half adder is a circuit that adds two binary digits, A and B. It has two outputs, sum (S) and carry (C). The carry signal represents an overflow into the next digit of a multi-digit addition. Figure 1.2 depicted a logic diagram for a half adder. a. derives the Boolean expression for s and c. b. tabulates a truth table for the half adder. Ao Bo Figure 1.2: Half adder os S Carrow_forwardIntroduction to Logic design EENG115. Please solve it by introduction to Logic design onley and make your Line clear and step by step pleasearrow_forwardIn this assignment, you are required to design a circuit that counts and displays the sequence of the number 010430011092 . The number will then be displayed on a 7-segment display and changed every 1 second. The block diagram is as shown in Figure 1. Construct your design as follow: - (a) Design a combinational logic circuit that converts binary number to a sequence of the number 010430011092 and to be displayed on a single common anode 7-segment display. The logic circuit must be designed using 2-input NAND gatearrow_forward
- Find the simplified sum-of-products representation of the function from the Karnaugh map shown in Figure below. Draw logic circuit. (Note that x is the don't care term) A-B 00 C-D 00 0 01 11 10 01 1 1 11 1 10 1arrow_forwardLogic Design courses / EE200SP21 / General / Mid Term Examination Part II (Subjecti Compute the minimal products of sum and minimal sum of products expressions for following KMAP. Show your groupings on KMAP АВ CD 1 1 1 1 0. Instructions: You have to solve the answer by hand on paper, scan/take photo and upload it as a single file. Local Disk (D:) Mid Term Examinat.arrow_forwardFrom the equation A' B C' + A B C D, draw the combinational minimised logic circuit using respective Logic gate symbolsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
Introduction to Logic Gates; Author: Computer Science;https://www.youtube.com/watch?v=fw-N9P38mi4;License: Standard youtube license