
Concept explainers
(a)
The duration for which the Sun should shine to release energy having an amount equal to that produced by the complete mass-to-energy conversion of a carbon atom.

Answer to Problem 9Q
The duration for which the Sun should shine is
Explanation of Solution
Given:
The luminosity of the Sun is
The mass of the carbon atom is
Formula Used:
The duration for which the Sun should shine is given by
Here,
Einstein’s mass-energy relation is given by
Calculations:
The energy released as a result of mass-energy equivalence is calculated as
The duration for which the Sun should shine is calculated as
Conclusion:
The duration for which the Sun should shine to release energy having an amount equal to that produced by the complete mass-to-energy conversion of a carbon atom is
(b)
The duration for which the Sun should shine to release energy having an amount equal to that produced by the complete mass-to-energy conversion of

Answer to Problem 9Q
The duration for which the Sun should shine is
Explanation of Solution
Given:
The luminosity of the Sun is
The mass of the substance is
Formula Used:
The duration for which the Sun should shine is given by
Here,
Einstein’s mass-energy relation is given by
Calculations:
The energy released as a result of mass-energy equivalence is calculated as
The duration for which the Sun should shine is calculated as
Conclusion:
The duration for which the Sun should shine to release energy having an amount equal to that produced by the complete mass-to-energy conversion of
(c)
The duration for which the Sun should shine to release energy having an amount equal to that produced by the complete mass-to-energy conversion of Earth.

Answer to Problem 9Q
The duration for which the Sun should shine is
Explanation of Solution
Given:
The luminosity of the Sun is
The mass of the Earth is
Formula Used:
The duration for which the Sun should shine is given by
Here,
Einstein’s mass-energy relation is given by
Calculations:
The energy released as a result of mass-energy equivalence is calculated as
The duration for which the Sun should shine is calculated as
Conclusion:
The duration for which the Sun should shine to release energy having an amount equal to that produced by the complete mass-to-energy conversion of Earth is
Want to see more full solutions like this?
Chapter 16 Solutions
Universe: Stars And Galaxies
- A shot putter releases a shot at 13 m/s at an angle of 42 degrees to the horizontal and from a height of 1.83 m above the ground. (Note: For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.) Calculate and answer all parts. Only use equations PROVIDED:arrow_forwardIf a person jumps upwards with a vertical velocity of 5 m/s, What is their velocity 0.5 second into the jump?arrow_forwardA solid sphere 22 cm in radius carries 17 μC, distributed uniformly throughout its volume. Part A Find the electric field strength 12 cm from the sphere's center. Express your answer using two significant figures. E₁ = ΜΕ ΑΣΦ ха Хь b Submit Previous Answers Request Answer <☑ × Incorrect; Try Again; 4 attempts remaining ▾ Part B ? |X| X.10" <☑ Find the electric field strength 22 cm from the sphere's center. Express your answer using two significant figures. ΜΕ ΑΣΦ E2 = Submit Request Answer ▾ Part C ? MN/C Find the electric field strength 44 cm from the sphere's center. Express your answer using two significant figures. ΕΠΙ ΑΣΦ E3 = Submit Request Answer ? MN/C MN/Carrow_forward
- No chatgpt plsarrow_forwardIn a naval battle, a battleship is attempting to fire on a destroyer. The battleship is a distance d1 = 2,150 m to the east of the peak of a mountain on an island, as shown in the figure below. The destroyer is attempting to evade cannon shells fired from the battleship by hiding on the west side of the island. The initial speed of the shells that the battleship fires is vi = 245 m/s. The peak of the mountain is h = 1,840 m above sea level, and the western shore of the island is a horizontal distance d2 = 250 m from the peak. What are the distances (in m), as measured from the western shore of the island, at which the destroyer will be safe from fire from the battleship? (Note the figure is not to scale. You may assume that the height and width of the destroyer are small compared to d1 and h.)arrow_forwardNo chatgpt plsarrow_forward
- The law of reflection applies to Question 14Select one: a. specular reflection b. irregular reflection c. All of these d. diffuse reflectionarrow_forwardAccording to your book "normal" human body temperature is considered to be ________? Select one: a. none of these b. 98.6°C c. 37°C d. 100°Carrow_forwardProblem Seven. A football receiver running straight downfield at 5.60 m/s is 11.5 m in front of the quarterback when a pass is thrown downfield at an angle of 35.0° above the horizon. 8.) If the receiver never changes speed and the ball is caught at the same height from which it was thrown, find the distance between the quarterback and the receiver when the catch is made. (A) 21.3 (B) 17.8 (C) 18.8 (D) 19.9 (E) 67.5arrow_forward
- When two bar magnets are near each other, the north pole of one of the magnets experiences what type of force from the other magnet? 1. both an attractive force and a repulsive force 2. a Coulomb force 3. only an attractive force 4. only a repulsive forcearrow_forwardWhat can be said about the electric force between two charged particles? It varies as 1/r. It depends only on the magnitudes of the charges. It is much, much greater than the attractive gravitational force. It is repulsive for unlike charges.arrow_forwardA piece of copper originally 305mm long is pulled in tension with a stress of 276MPa. If the deformation is elastic, what will be the resultant elongation. E for copper is 110Gpaarrow_forward
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax





