Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 14Q
To determine
The amount of hydrogen Sirius converted into helium each second.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A blue supergiant star has a radius of 7.4 x 1010 m. The spherical surface behaves like a blackbody radiator. If the blue supergiant star radiates an
energy rate of 1.29 × 1033 w, what would be its surface temperature (in °C)? The Stefan-Boltzmann constant is 5.67 × 10-8 w/(m2 . K4).
Imagine a planet orbiting a star. Observations show a Doppler shift in the star's spectrum of 58 m/s over the 3.3 day orbit of the planet. What is the mass of the planet in kg? Assume the star has the same mass as the Sun (2.0 x1030 kg), there are 365.25 days in a year, and 1AU = 1.5 x 1011 m.
Many of the bright stars in the night sky are highly luminous normal blue stars (such as Acrux), and others are blue giants (such as Rigel) or red giants (such as Betelgeuse). Generally, such stars have a luminosity of 103 to 105 times that of our Sun!
Ignoring any effects from our atmosphere, how bright would a star with a luminosity of 8380 solar luminosities be if it were located 620 light years from Earth?
(You will need to convert some values.)
W/m²
For comparison, if you were 1 meter from a regular 100 W light bulb, the brightness would be 7.96 W/ m². (Since stars are not this bright, your answer should be considerably less!) Kind of amazing you can see these things, isn't it?
Chapter 16 Solutions
Universe: Stars And Galaxies
Ch. 16 - Prob. 1QCh. 16 - Prob. 2QCh. 16 - Prob. 3QCh. 16 - Prob. 4QCh. 16 - Prob. 5QCh. 16 - Prob. 6QCh. 16 - Prob. 7QCh. 16 - Prob. 8QCh. 16 - Prob. 9QCh. 16 - Prob. 10Q
Ch. 16 - Prob. 11QCh. 16 - Prob. 12QCh. 16 - Prob. 13QCh. 16 - Prob. 14QCh. 16 - Prob. 15QCh. 16 - Prob. 16QCh. 16 - Prob. 17QCh. 16 - Prob. 18QCh. 16 - Prob. 19QCh. 16 - Prob. 20QCh. 16 - Prob. 21QCh. 16 - Prob. 22QCh. 16 - Prob. 23QCh. 16 - Prob. 24QCh. 16 - Prob. 25QCh. 16 - Prob. 26QCh. 16 - Prob. 27QCh. 16 - Prob. 28QCh. 16 - Prob. 29QCh. 16 - Prob. 30QCh. 16 - Prob. 31QCh. 16 - Prob. 32QCh. 16 - Prob. 33QCh. 16 - Prob. 34QCh. 16 - Prob. 35QCh. 16 - Prob. 36QCh. 16 - Prob. 37QCh. 16 - Prob. 38QCh. 16 - Prob. 39QCh. 16 - Prob. 40QCh. 16 - Prob. 41QCh. 16 - Prob. 42QCh. 16 - Prob. 43QCh. 16 - Prob. 44QCh. 16 - Prob. 45QCh. 16 - Prob. 46QCh. 16 - Prob. 47QCh. 16 - Prob. 48QCh. 16 - Prob. 49QCh. 16 - Prob. 50QCh. 16 - Prob. 51QCh. 16 - Prob. 52QCh. 16 - Prob. 53QCh. 16 - Prob. 54QCh. 16 - Prob. 55QCh. 16 - Prob. 56QCh. 16 - Prob. 57QCh. 16 - Prob. 58QCh. 16 - Prob. 59QCh. 16 - Prob. 60Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The temperature of a star is 4990 K. Calculate the power per unit area radiated by the star in 519 nm to 525 nm range. (a) 0.230 MW/m (b) 0.384 MW/m (c) 0.390 MW/m2 (d) 0.220 MW/m2arrow_forwardAstronomers use two basis properties of stars to classify them. These two properties are luminosity and surface temperature. Luminosity usually refers to the brightness of the star relative to the brightness of our sun. Astronomers will often use a star’s color to measure its temperature. Stars with low temperatures produce a reddish light while stars with high temperatures shine with a brilliant blue—white light. Surface temperatures of stars range from 3000o C to 50,000o C. When these surface temperatures are plotted against luminosity, the stars fall into groups. Using the data similar to what you will plot in this activity, Danish astronomer Ejnar Hertzsprung and United States astronomer Henry Norris Russell independently arrived at similar results in what is now commonly referred to as the HR Diagram. Procedures:1. Read the Background Information 2. On the graph paper provided. Place a number next to the star according to its luminosity and surface temperature listed in the data…arrow_forwardThe temperature of a star can be determined from Amax, the wavelength of radiation that the star emits most intensely. The wavelength, λmax, is given for several stars in the table below. Star Antares λmax 934 nm Canopus 397 nm Regulus 223 nm The Sun 502 nm Vega 311 nm Based on their most intensely emitted wavelengths as presented in the table in the problem statement, rank the following stars in order of increasing surface temperature Antares Canopus Regulus The Sun Vega Increasing Surface Temperaturearrow_forward
- What is the rate of thermal radiation Emitted from a star with a radius of 2.310 x 10⁹m and a surface temperature of 8,420k? Assume that the spherical surface behaves as blackbody radiator .arrow_forwardThe temperature of the sun is approximately 5800 K and the temperature of the star Sirius A, the larger star of the Sirius via art, is approximately 10,000 K. The luminosity of Sirius A is about 33 times than Sun. The radiation law gives L=4(3.14) R^2 a T^4 By taking the ratio of the luminosities of Sirius A to the Sun, the relative values of luminosity and temperature can be used to determine the relative value of radius. What is the multiples of the Sun’s radius?arrow_forwardMany of the bright stars in the night sky are highly luminous normal blue stars (such as Acrux), and others are blue giants (such as Rigel) or red giants (such as Betelgeuse). Generally, such stars have a luminosity of 103 to 105 times that of our Sun! Ignoring any effects from our atmosphere, how bright would a star with a luminosity of 60900 solar luminosities be if it were located 532 light years from Earth? (You will need to convert some values.) W/m² For comparison, if you were 1 meter from a regular 100 W light bulb, the brightness would be 7.96 W/m². (Since stars are not this bright, your answer should be considerably less!) Kind of amazing you can see these things, isn't it?arrow_forward
- When stars like the Sun die, they lose their outer layers and expose their very hot cores. These exposed cores are called white dwarf stars. A certain white dwarf star has a peak emission wavelength of 0.546 nm. Approximating the star as a blackbody, what is its surface temperature? Wien's Displacement constant is b = 2.898 x 10-3 K m. The Stefan-Boltzmann constant is ? = 5.670 x 10-8 W/m2K4.arrow_forwardThe Hα spectral line has a rest wavelength of 6562.8 ˚A (remember: 1 ˚A = 10−10 m). In star A, the lineis seen at 6568.4 ˚A, in star B it’s seen at 6560.3 ˚A, and in star C it’s seen at 6562.8 ˚A. Which star ismoving the fastest (along the line of sight) and what is the radial velocity of each star?arrow_forwardYou have taken the spectrum of a star with a peak wavelength at 389 nm. You have determined the radius of the star to be 3.3 solar radii. What is the star’s luminosity, in solar units?arrow_forward
- The nearest star to the Sun is Proxima Centauri, a red dwarf star at a distance of 4.243 ly. Its surfacetemperature is estimated to 3042 K and its apparent magnitude is mbol = 7.77. What is the absolutemagnitude of Proxima Centauri?arrow_forwardWhat is the rate of thermal radiation emitted from a star with a radius of 2.310 x 109 m anda surface temperature of 8,420 K? Assume that the spherical surface behaves as a blackbody radiator.[Surface Area of a sphere = 4rr?: Area of a circle = Mr? or (Tt/4)d21arrow_forwardThe surface temperature of a class O blue-white star is around 40 *10^3 K. At what frequency will it radiate most of its energy?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning