Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 13Q
To determine
(a)
The amount of energy released by the annihilation of an electron and positron.
To determine
(b)
The wavelength of each photon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use Wien's Law to calculate the peak wavelength of light coming from the Sun. Assume T=5800 K for the surface temperature of the Sun. Wein's displacement law says that the blackbody temperature and peak wavelength multiplied together give a constant of 0.29 cm-K. (K is degrees Kelvin).
Convert the wavelength from part A into a frequency. The product of wavelength and frequency for electromagnetic radiation is a constant, the speed of light (c), 3 x 10^10 cm/s.
Astronomers can determine the heat of various areas of the universe by making observations about energy they emit. Gamma rays can be found in areas where there is a lot of star formation occurring.
What would you guess about the temperature of these areas? Explain why.Do you think there would be a lot of particles present? Explain why.
Calculate the Doppler linewidth for an emission line near 500 nm from Ni, at 3000 K.
Chapter 16 Solutions
Universe: Stars And Galaxies
Ch. 16 - Prob. 1QCh. 16 - Prob. 2QCh. 16 - Prob. 3QCh. 16 - Prob. 4QCh. 16 - Prob. 5QCh. 16 - Prob. 6QCh. 16 - Prob. 7QCh. 16 - Prob. 8QCh. 16 - Prob. 9QCh. 16 - Prob. 10Q
Ch. 16 - Prob. 11QCh. 16 - Prob. 12QCh. 16 - Prob. 13QCh. 16 - Prob. 14QCh. 16 - Prob. 15QCh. 16 - Prob. 16QCh. 16 - Prob. 17QCh. 16 - Prob. 18QCh. 16 - Prob. 19QCh. 16 - Prob. 20QCh. 16 - Prob. 21QCh. 16 - Prob. 22QCh. 16 - Prob. 23QCh. 16 - Prob. 24QCh. 16 - Prob. 25QCh. 16 - Prob. 26QCh. 16 - Prob. 27QCh. 16 - Prob. 28QCh. 16 - Prob. 29QCh. 16 - Prob. 30QCh. 16 - Prob. 31QCh. 16 - Prob. 32QCh. 16 - Prob. 33QCh. 16 - Prob. 34QCh. 16 - Prob. 35QCh. 16 - Prob. 36QCh. 16 - Prob. 37QCh. 16 - Prob. 38QCh. 16 - Prob. 39QCh. 16 - Prob. 40QCh. 16 - Prob. 41QCh. 16 - Prob. 42QCh. 16 - Prob. 43QCh. 16 - Prob. 44QCh. 16 - Prob. 45QCh. 16 - Prob. 46QCh. 16 - Prob. 47QCh. 16 - Prob. 48QCh. 16 - Prob. 49QCh. 16 - Prob. 50QCh. 16 - Prob. 51QCh. 16 - Prob. 52QCh. 16 - Prob. 53QCh. 16 - Prob. 54QCh. 16 - Prob. 55QCh. 16 - Prob. 56QCh. 16 - Prob. 57QCh. 16 - Prob. 58QCh. 16 - Prob. 59QCh. 16 - Prob. 60Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please answer within 90 minutes.arrow_forwardLongs Van aw rejtoug] - consider a liquid mixture of components 1,2, 3, 4. The excess Gibbo energies of all the binaries, formed by these components obey relations of the formi Aijxjxj G₁₁ RT where Alj is the const characteristic of the i-j binary. Desire an expression for the co-efficient of component-I in the quaternary solution. وعاد سامانه . NL = enemical Engg Thermodyamies Question Torture TA gif croftrum svedo sitarrow_forwardSuppose a star 1000 times brighter than our Sun (that is, emitting 1000 times the power) suddenly goes supernova. Using data from Table: (a) By what factor does its power output increase? (b) How many times brighter than our entire Milky Way galaxy is the supernova? (c) Based on your answers, discuss whether it should be possible to observe supernovas in distant galaxies. Note that there are on the order of 1011 observable galaxies, the average brightness of which is somewhat less than our own galaxy.arrow_forward
- Can you solve the problem?arrow_forwardA)The star 58 Eridani is a feint but naked-eye star similar to the Sun. Suppose that you are observing this star in the night sky without a telescope. Ignoring any interstellar extinction or atmospheric absorption, approximately how many photons per second arrive at your retina? Show all steps in calculation . B) The Mid-infared Instrument (MIRI , camera and spectrograph ) on the James Webb Space Telescope operates in the band 5-28 µm . For 58 Eridani , approximatley how many photons per second can be used by this instrument ? Assume that MIRI takes all the photons from the full JWST mirror . Show all steps in calcultation . Describe breifly two or three other factors which play a role in determining the sensetivitu of an instrument such as MIRI ?arrow_forwardWhat is the wavelength in micrometers of peak emission for a black body at 33.5°C? (c = 3.0 × 108 m/s, Wien displacement law constant is 2.9 × 10-3 m ∙ K, σ = 5.67 × 10-8 W/m2 ∙ K4). Please give your answer with one decimal place.arrow_forward
- The Andromeda Galaxy, M31, is the closest large spiral galaxy to our Milky Way. When we look at its chemical spectrum, we see that its hydrogen alpha emission line (Hα) has an observed wavelength of λobs = 655 nm.-Calculate z, being careful with the sign.-How fast is it moving in km/s?-Is it redshifted or blueshifted? Is it moving towards or away from us? answer to three significant figures.arrow_forwardIf you were located 100 km from a 1 GW nuclear power plant,what would the neutrino flux be at your location? Assume that a1 GW nuclear power plant releases 1021 neutrinos per second andyou present a 1 m2 surface to the neutrino flux.arrow_forwardModels of the first star-forming clouds indicate that they had a temperature of roughly 150 K and a particle density of roughly 400,000 particles per cubic centimeter at the time they started trapping their internal thermal energy. ▼ Part A Estimate the mass at which thermal pressure balances gravity for these values of pressure and temperature. Express your answer in kilograms. —| ΑΣΦ Mcloud Submit Part B = Mcloud How does that mass compare with the Sun's mass? Express your answer in solar masses. Submit Request Answer = ΤΙ ΑΣΦ Request Answer ? ? kg MSun Reviewarrow_forward
- I need the answer as soon as possiblearrow_forwardWhat is the ratio of the angular resolution limit of Keck to the angular resolution limit of HST? (Assume they are both observing at the same wavelength.) [Compute the relevant ratio Keck/HST, express as a decimal, and enter below.] HST orbits at an altitude of 559 km above the Earth's surface. Assume its orbit is circular. Compute its orbital period in hours. Compute its orbital speed (in km/s).arrow_forwardLTI Launch A PHY035 MODULE 2 REMONAL E X + A webassign.net/web/Student/Assignment-Responses/last?dep=29211510 Paus Apps Imported From IE a Registration: Noteb. O PS - PHILGEPS ONL. iLovePDF | Online P.. S Procurement Service REHABILITATION IC. p Government Procur. a Contact Us Philipp. our best submission for each question part is used for your score. 1. DETAILS KATZPSEF1 29.P.042. MY NOTES ASK YOUR TEACH The figure below shows five resistors and two batteries connected in a circuit. What are the currents I, , and I (Consider the following values: R, 1.06 n, R, 2.18 0, R-3.12 0, R-4.16 0, R-6.06 0. Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign. Indicate the direction with the sign of your answer.) A Rs 12.0 V - ww R. 9.00 V Rarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax