Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 17Q
To determine
The effect on the overall radius of the Sun, if thermonuclear fusion in the Sun were suddenly to stop.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need the answer as soon as possible
2 of 7
Question A2
a)
Calculate the mass loss rate of the Sun M due to the solar wind flow. Assume average
properties of the solar wind of number density 6 protons cm³, and a flow speed of 450 km
s-1. Express your answer in units of both kg per year, and solar masses per year.
b) Suppose the solar wind flow is perfectly radial. Calculate the expected rate of change of
solar rotation frequency dw at the present time, based on conservation of angular momen-
tum. Give your answer in units of rad s-1 y-1 (i.e., radians per second per year) and also
in terms of fractional change per year, i.e., 1 du.
w dt'
Use a current solar rotation period of P = 25.38 days to calculate the current angular
frequency of rotation w. The moment of inertia of a uniform sphere is MR². You can
assume that the radius of the Sun is approximately constant, and the change in its moment
of inertia due to the solar wind is only due to the mass loss.
Page 3
c) By observing the rotation period of stars similar to the…
I asked this question already but the answer was wrong and I couldn't follow along with the work so I was hoping you could try again
A Sun-like star has a power output of 3.1·1026 W with 87.3% of this energy supplied by the proton-proton chain. How many protons are consumed per second in the core of this star?
Chapter 16 Solutions
Universe: Stars And Galaxies
Ch. 16 - Prob. 1QCh. 16 - Prob. 2QCh. 16 - Prob. 3QCh. 16 - Prob. 4QCh. 16 - Prob. 5QCh. 16 - Prob. 6QCh. 16 - Prob. 7QCh. 16 - Prob. 8QCh. 16 - Prob. 9QCh. 16 - Prob. 10Q
Ch. 16 - Prob. 11QCh. 16 - Prob. 12QCh. 16 - Prob. 13QCh. 16 - Prob. 14QCh. 16 - Prob. 15QCh. 16 - Prob. 16QCh. 16 - Prob. 17QCh. 16 - Prob. 18QCh. 16 - Prob. 19QCh. 16 - Prob. 20QCh. 16 - Prob. 21QCh. 16 - Prob. 22QCh. 16 - Prob. 23QCh. 16 - Prob. 24QCh. 16 - Prob. 25QCh. 16 - Prob. 26QCh. 16 - Prob. 27QCh. 16 - Prob. 28QCh. 16 - Prob. 29QCh. 16 - Prob. 30QCh. 16 - Prob. 31QCh. 16 - Prob. 32QCh. 16 - Prob. 33QCh. 16 - Prob. 34QCh. 16 - Prob. 35QCh. 16 - Prob. 36QCh. 16 - Prob. 37QCh. 16 - Prob. 38QCh. 16 - Prob. 39QCh. 16 - Prob. 40QCh. 16 - Prob. 41QCh. 16 - Prob. 42QCh. 16 - Prob. 43QCh. 16 - Prob. 44QCh. 16 - Prob. 45QCh. 16 - Prob. 46QCh. 16 - Prob. 47QCh. 16 - Prob. 48QCh. 16 - Prob. 49QCh. 16 - Prob. 50QCh. 16 - Prob. 51QCh. 16 - Prob. 52QCh. 16 - Prob. 53QCh. 16 - Prob. 54QCh. 16 - Prob. 55QCh. 16 - Prob. 56QCh. 16 - Prob. 57QCh. 16 - Prob. 58QCh. 16 - Prob. 59QCh. 16 - Prob. 60Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose you live in northern Canada and an extremely strong flare is reported on the Sun. What precautions might you take? What might be a positive result?arrow_forwardShow that the statement that 92% of the Sun’s atoms are hydrogen is consistent with the statement that 73% of the Sun’s mass is made up of hydrogen, as found in Table 15.2. (Hint: Make the simplifying assumption, which is nearly correct, that the Sun is made up entirely of hydrogen and helium.)arrow_forwardWhy is a higher temperature required to fuse hydrogen to helium by means of the CNO cycle than is required by the process that occurs in the Sun, which involves only isotopes of hydrogen and helium?arrow_forward
- d) Calculate what temperature a thermal kinetic energy of 2 keV corresponds to, and compare this with the temperature in the core of the Sun.arrow_forwarda.Calculate the mass loss rate of the Sun M˙ due to the solar wind flow. Assume averageproperties of the solar wind of number density 6 protons cm−3, and a flow speed of 450 kms−1. Express your answer in units of both kg per year, and solar masses per year. b.Suppose the solar wind flow is perfectly radial. Calculate the expected rate of change ofsolar rotation frequency dω/dt at the present time, based on conservation of angular momentum. Give your answer in units of rad s−1 y−1(i.e., radians per second per year) and alsoin terms of fractional change per year, i.e., 1/ωdω/dt .Use a current solar rotation period of P = 25.38 days to calculate the current angularfrequency of rotation ω. The moment of inertia of a uniform sphere is 2/5 MR2. You canassume that the radius of the Sun is approximately constant, and the change in its momentof inertia due to the solar wind is only due to the mass loss. c.By observing the rotation period of stars similar to the Sun, it is inferred that their…arrow_forwardConsidering your answer to the above question, how does this timescale for the Sun's evaporation by the solar wind compare to the age of the Universe? O The solar wind evaporation time is much longer than the age of the Universe O The solar wind evaporation time is much shorter than the age of the Universe. O The solar wind evaporation time is close to the age of the Universe (ie, within a few billion yearsarrow_forward
- 1. The mass of the Sun is about 2x10³0 kg. The Sun was about 72% hydrogen when it first formed. About 11% of the total amount of the Sun's hydrogen is available for fusion within the Sun's core. [3 points] (a) What is the total mass of hydrogen available for fusion, in kg? (b) The Sun fuses about 600 billion kg of hydrogen each second. Calculate how long the Sun's initial supply of hydrogen can last. Give your answer in both seconds and years. Hint: use the result you calculated in part (a). (c) We know that our Solar System is about 4.5 billion years old. Using your calculation above, how much longer do we have until the Sun runs out of hydrogen?arrow_forwardAssume that Hydrogen comprises 79% of the Sun's mass. How much mass is this? 1.57e+30 kg Only about 11% of the initial Hydrogen in the Sun is in the core where it is hot enough to burn. What was the total mass of the inital H in the core of the Sun? Hint: Use the answer above and the percent in the core to determine the total mass. Using the results from above, how much total energy is available to the Sun via nuclear fusion over its lifetime? (HINT: only 0.71% of the total mass of the available H in the core is converted into energy) Hint: E = m c^2arrow_forwardHow many days would it take for the particles to reach earth if thr solar wind speed increased to 2000 km/s?arrow_forward
- Explain how we know that the Sun’s energy is not supplied either by chemical burning, as in fires here on Earth, or by gravitational contraction (shrinking).arrow_forwardCan you solve the problem, according to the information provided?arrow_forwardWe measure nuclear explosives in terms of kilotons of TNT (the bomb that destroyed Hiroshima in WWII was a 20 kiloton weapon.) 1 kiloton = 4.19 × 1012 Joules. How many Hiroshima-type bombs would you have to explode every second to equal the Sun's energy output? The purpose of this question is to illustrate that the most powerful (and destructive) things we (as a species) have created, there are things in the universe that are almost unimaginably more powerful.Number of Hiroshima-type bombs needed to equal 1 s of the Sun's energy output = _____ bombs/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning