Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 76PQ
To determine
The rotational inertia of the pendulum around its pivot point.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A rod has length 0.900 m and mass 0.600 kg and is pivoted at one end. The rod is not uniform; the center of mass of the rod is not at its center but is 0.500 m from the pivot. The period of the rod’s motion as a pendulum is 1.59 s. What is the moment of inertia of the rod around the pivot?
A small ball of mass 1.5 kg is attached to one end of a 2.00-m-long massless rod, and the other end of the rod is hung from a pivot.
When the resulting pendulum is 32° from the vertical, what is the magnitude of the torque about the pivot?
A simple pendulum is made of a 50 cm-string and a bob of mass m. At t =0, the
pendulum is at its equilibrium position and is given an initial velocity v = 0.1 m/s.
The maximum angular speed, e'max, is.
0.8 rad/s
O04rad/s
0.05 rad/s
0.2 rad/s
O 01 rad/s
Chapter 16 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 16.1 - Prob. 16.1CECh. 16.2 - Prob. 16.2CECh. 16.2 - For each expression, identify the angular...Ch. 16.5 - Prob. 16.4CECh. 16.6 - Prob. 16.5CECh. 16.6 - Prob. 16.6CECh. 16 - Case Study For each velocity listed, state the...Ch. 16 - Case Study For each acceleration listed, state the...Ch. 16 - Prob. 3PQCh. 16 - Prob. 4PQ
Ch. 16 - Prob. 5PQCh. 16 - Prob. 6PQCh. 16 - The equation of motion of a simple harmonic...Ch. 16 - The expression x = 8.50 cos (2.40 t + /2)...Ch. 16 - A simple harmonic oscillator has amplitude A and...Ch. 16 - Prob. 10PQCh. 16 - A 1.50-kg mass is attached to a spring with spring...Ch. 16 - Prob. 12PQCh. 16 - Prob. 13PQCh. 16 - When the Earth passes a planet such as Mars, the...Ch. 16 - A point on the edge of a childs pinwheel is in...Ch. 16 - Prob. 16PQCh. 16 - Prob. 17PQCh. 16 - A jack-in-the-box undergoes simple harmonic motion...Ch. 16 - C, N A uniform plank of length L and mass M is...Ch. 16 - Prob. 20PQCh. 16 - A block of mass m = 5.94 kg is attached to a...Ch. 16 - A block of mass m rests on a frictionless,...Ch. 16 - It is important for astronauts in space to monitor...Ch. 16 - Prob. 24PQCh. 16 - A spring of mass ms and spring constant k is...Ch. 16 - In an undergraduate physics lab, a simple pendulum...Ch. 16 - A simple pendulum of length L hangs from the...Ch. 16 - We do not need the analogy in Equation 16.30 to...Ch. 16 - Prob. 29PQCh. 16 - Prob. 30PQCh. 16 - Prob. 31PQCh. 16 - Prob. 32PQCh. 16 - Prob. 33PQCh. 16 - Show that angular frequency of a physical pendulum...Ch. 16 - A uniform annular ring of mass m and inner and...Ch. 16 - A child works on a project in art class and uses...Ch. 16 - Prob. 37PQCh. 16 - Prob. 38PQCh. 16 - In the short story The Pit and the Pendulum by...Ch. 16 - Prob. 40PQCh. 16 - A restaurant manager has decorated his retro diner...Ch. 16 - Prob. 42PQCh. 16 - A wooden block (m = 0.600 kg) is connected to a...Ch. 16 - Prob. 44PQCh. 16 - Prob. 45PQCh. 16 - Prob. 46PQCh. 16 - Prob. 47PQCh. 16 - Prob. 48PQCh. 16 - A car of mass 2.00 103 kg is lowered by 1.50 cm...Ch. 16 - Prob. 50PQCh. 16 - Prob. 51PQCh. 16 - Prob. 52PQCh. 16 - Prob. 53PQCh. 16 - Prob. 54PQCh. 16 - Prob. 55PQCh. 16 - Prob. 56PQCh. 16 - Prob. 57PQCh. 16 - An ideal simple harmonic oscillator comprises a...Ch. 16 - Table P16.59 gives the position of a block...Ch. 16 - Use the position data for the block given in Table...Ch. 16 - Consider the position data for the block given in...Ch. 16 - Prob. 62PQCh. 16 - Prob. 63PQCh. 16 - Use the data in Table P16.59 for a block of mass m...Ch. 16 - Consider the data for a block of mass m = 0.250 kg...Ch. 16 - A mass on a spring undergoing simple harmonic...Ch. 16 - A particle initially located at the origin...Ch. 16 - Consider the system shown in Figure P16.68 as...Ch. 16 - Prob. 69PQCh. 16 - Prob. 70PQCh. 16 - Prob. 71PQCh. 16 - Prob. 72PQCh. 16 - Determine the period of oscillation of a simple...Ch. 16 - The total energy of a simple harmonic oscillator...Ch. 16 - A spherical bob of mass m and radius R is...Ch. 16 - Prob. 76PQCh. 16 - A lightweight spring with spring constant k = 225...Ch. 16 - Determine the angular frequency of oscillation of...Ch. 16 - Prob. 79PQCh. 16 - A Two springs, with spring constants k1 and k2,...Ch. 16 - Prob. 81PQCh. 16 - Prob. 82PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P10.18 shows the drive train of a bicycle that has wheels 67.3 cm in diameter and pedal cranks 17.5 cm long. The cyclist pedals at a steady cadence of 76.0 rev/min. The chain engages with a from sprocket 15.2 cm in diameter and a rear sprocket 7.00 cm in diameter. Calculate (a) the speed of a link of the chain relative to the bicycle frame, (b) the angular speed of the bicycle wheels, and (c) the speed of the bicycle relative to the road, (d) What pieces of data, if any, are not necessary for the calculations?arrow_forwardA square plate with sides 2.0 m in length can rotatearound an axle passingthrough its center of mass(CM) and perpendicular toits surface (Fig. P12.53). There are four forces acting on the plate at differentpoints. The rotational inertia of the plate is 24 kg m2. Use the values given in the figure to answer the following questions. a. Whatis the net torque acting onthe plate? b. What is theangular acceleration of the plate? FIGURE P12.53 Problems 53 and 54.arrow_forwardA uniform solid sphere of mass m and radius r is releasedfrom rest and rolls without slipping on a semicircular ramp ofradius R r (Fig. P13.76). Ifthe initial position of the sphereis at an angle to the vertical,what is its speed at the bottomof the ramp? FIGURE P13.76arrow_forward
- Find the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forwardConsider the disk in Problem 71. The disks outer rim hasradius R = 4.20 m, and F1 = 10.5 N. Find the magnitude ofeach torque exerted around the center of the disk. FIGURE P12.71 Problems 71-75arrow_forwardAs shown in Figure OQ10.9, a cord is wrapped onto a cylindrical reel mounted on a fixed, frictionless, horizontal axle. When does the reel have a greater magnitude of angular acceleration? (a) When the cord is pulled down with a constant force of 50 N. (b) When an object of weight 50 N is hung from the cord and released. (c) The angular accelerations in parts (a) and (b) are equal. (d) It is impossible to determine. Figure OQ10.9arrow_forward
- A rigid, massless rod has three particles with equal masses attached to it as shown in Figure P11.37. The rod is free to rotate in a vertical plane about a frictionless axle perpendicular to the rod through the point P and is released from rest in the horizontal position at t = 0. Assuming m and d are known, find (a) the moment of inertia of the system of three particles about the pivot, (b) the torque acting on the system at t = 0, (c) the angular acceleration of the system at t = 0, (d) the linear acceleration of the particle labeled 3 at t = 0, (e) the maximum kinetic energy of the system, (f) the maximum angular speed reached by the rod, (g) the maximum angular momentum of the system, and (h) the maximum speed reached by the particle labeled 2. Figure P11.37arrow_forwardReview. An object with a mass of m = 5.10 kg is attached to the free end of a light string wrapped around a reel of radius R = 0.250 m and mass M = 3.00 kg. The reel is a solid disk, free to rotate in a vertical plane about the horizontal axis passing through its center as shown in Figure P10.45. The suspended object is released from rest 6.00 m above the floor. Determine (a) the tension in the string, (b) the acceleration of the object, and (c) the speed with which the object hits the floor. (d) Verify your answer to part (c) by using the isolated system (energy) model. Figure P10.45arrow_forwardA space station is constructed in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (See Fig. P10.52.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. (a) What angular momentum does the space station acquire? (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N? Figure P10.52 Problems 52 and 54.arrow_forward
- A ball of mass M = 5.00 kg and radius r = 5.00 cm isattached to one end of a thin,cylindrical rod of length L = 15.0 cm and mass m = 0.600 kg.The ball and rod, initially at restin a vertical position and freeto rotate around the axis shownin Figure P13.70, are nudgedinto motion. a. What is therotational kinetic energy of thesystem when the ball and rodreach a horizontal position? b. What is the angular speed of the ball and rod when they reach a horizontal position? c. What is the linear speed of the centerof mass of the ball when the ball and rod reach a horizontalposition? d. What is the ratio of the speed found in part (c) tothe speed of a ball that falls freely through the same distance? FIGURE P13.70arrow_forwardThe angular momentum vector of a precessing gyroscope sweeps out a cone as shown in Figure P11.31. The angular speed of the tip of the angular momentum vector, called its precessional frequency, is given by p=/I, where is the magnitude of the torque on the gyroscope and L is the magnitude of its angular momentum. In the motion called precession of the equinoxes, the Earths axis of rotation processes about the perpendicular to its orbital plane with a period of 2.58 104 yr. Model the Earth as a uniform sphere and calculate the torque on the Earth that is causing this precession. Figure P11.31 A precessing angular momentum vector sweeps out a cone in space.arrow_forwardA pendulum consists of a rod of mass 2 kg and length 1 m with a solid sphere at one end with mass 0.3 kg and radius 20 cm (see the following figure). If the pendulum is released from rest at an angle of 30 , what is the angular velocity at the lowest point?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY