
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 45PQ
(a)
To determine
The amplitude of motion, if maximum speed of the block is
(b)
To determine
The speed of the block when it is halfway between the equilibrium point and the maximum displacement.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
No chatgpt pls will upvote
4.) The diagram shows the electric field lines of a positively charged conducting sphere of
radius R and charge Q.
A
B
Points A and B are located on the same field line.
A proton is placed at A and released from rest. The magnitude of the work done by the electric field in
moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of
the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere.
(a) Explain why the electric potential decreases from A to B. [2]
(b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the
sphere.
R
[2]
(c(i)) Calculate the electric potential difference between points A and B. [1]
(c(ii)) Determine the charge Q of the sphere. [2]
(d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists
developed a common terminology to describe different types of fields. [1]
3.) The graph shows how current I varies with potential difference V across a component X.
904
80-
70-
60-
50-
I/MA
40-
30-
20-
10-
0+
0
0.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
VIV
Component X and a cell of negligible internal resistance are placed in a circuit.
A variable resistor R is connected in series with component X. The ammeter reads 20mA.
4.0V
4.0V
Component X and the cell are now placed in a potential divider circuit.
(a) Outline why component X is considered non-ohmic. [1]
(b(i)) Determine the resistance of the variable resistor. [3]
(b(ii)) Calculate the power dissipated in the circuit. [1]
(c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider
is moved from Q to P. [1]
(c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider
arrangement over the arrangement in (b).
Chapter 16 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 16.1 - Prob. 16.1CECh. 16.2 - Prob. 16.2CECh. 16.2 - For each expression, identify the angular...Ch. 16.5 - Prob. 16.4CECh. 16.6 - Prob. 16.5CECh. 16.6 - Prob. 16.6CECh. 16 - Case Study For each velocity listed, state the...Ch. 16 - Case Study For each acceleration listed, state the...Ch. 16 - Prob. 3PQCh. 16 - Prob. 4PQ
Ch. 16 - Prob. 5PQCh. 16 - Prob. 6PQCh. 16 - The equation of motion of a simple harmonic...Ch. 16 - The expression x = 8.50 cos (2.40 t + /2)...Ch. 16 - A simple harmonic oscillator has amplitude A and...Ch. 16 - Prob. 10PQCh. 16 - A 1.50-kg mass is attached to a spring with spring...Ch. 16 - Prob. 12PQCh. 16 - Prob. 13PQCh. 16 - When the Earth passes a planet such as Mars, the...Ch. 16 - A point on the edge of a childs pinwheel is in...Ch. 16 - Prob. 16PQCh. 16 - Prob. 17PQCh. 16 - A jack-in-the-box undergoes simple harmonic motion...Ch. 16 - C, N A uniform plank of length L and mass M is...Ch. 16 - Prob. 20PQCh. 16 - A block of mass m = 5.94 kg is attached to a...Ch. 16 - A block of mass m rests on a frictionless,...Ch. 16 - It is important for astronauts in space to monitor...Ch. 16 - Prob. 24PQCh. 16 - A spring of mass ms and spring constant k is...Ch. 16 - In an undergraduate physics lab, a simple pendulum...Ch. 16 - A simple pendulum of length L hangs from the...Ch. 16 - We do not need the analogy in Equation 16.30 to...Ch. 16 - Prob. 29PQCh. 16 - Prob. 30PQCh. 16 - Prob. 31PQCh. 16 - Prob. 32PQCh. 16 - Prob. 33PQCh. 16 - Show that angular frequency of a physical pendulum...Ch. 16 - A uniform annular ring of mass m and inner and...Ch. 16 - A child works on a project in art class and uses...Ch. 16 - Prob. 37PQCh. 16 - Prob. 38PQCh. 16 - In the short story The Pit and the Pendulum by...Ch. 16 - Prob. 40PQCh. 16 - A restaurant manager has decorated his retro diner...Ch. 16 - Prob. 42PQCh. 16 - A wooden block (m = 0.600 kg) is connected to a...Ch. 16 - Prob. 44PQCh. 16 - Prob. 45PQCh. 16 - Prob. 46PQCh. 16 - Prob. 47PQCh. 16 - Prob. 48PQCh. 16 - A car of mass 2.00 103 kg is lowered by 1.50 cm...Ch. 16 - Prob. 50PQCh. 16 - Prob. 51PQCh. 16 - Prob. 52PQCh. 16 - Prob. 53PQCh. 16 - Prob. 54PQCh. 16 - Prob. 55PQCh. 16 - Prob. 56PQCh. 16 - Prob. 57PQCh. 16 - An ideal simple harmonic oscillator comprises a...Ch. 16 - Table P16.59 gives the position of a block...Ch. 16 - Use the position data for the block given in Table...Ch. 16 - Consider the position data for the block given in...Ch. 16 - Prob. 62PQCh. 16 - Prob. 63PQCh. 16 - Use the data in Table P16.59 for a block of mass m...Ch. 16 - Consider the data for a block of mass m = 0.250 kg...Ch. 16 - A mass on a spring undergoing simple harmonic...Ch. 16 - A particle initially located at the origin...Ch. 16 - Consider the system shown in Figure P16.68 as...Ch. 16 - Prob. 69PQCh. 16 - Prob. 70PQCh. 16 - Prob. 71PQCh. 16 - Prob. 72PQCh. 16 - Determine the period of oscillation of a simple...Ch. 16 - The total energy of a simple harmonic oscillator...Ch. 16 - A spherical bob of mass m and radius R is...Ch. 16 - Prob. 76PQCh. 16 - A lightweight spring with spring constant k = 225...Ch. 16 - Determine the angular frequency of oscillation of...Ch. 16 - Prob. 79PQCh. 16 - A Two springs, with spring constants k1 and k2,...Ch. 16 - Prob. 81PQCh. 16 - Prob. 82PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardA rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forwardA certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forward
- Describe the development of rational choice theory in sociology. Please includearrow_forwardA-E pleasearrow_forwardA 11.8 L gas tank containing 3.90 moles of ideal He gas at 26.0°C is placed inside a completely evacuated insulated bell jar of volume 39.0 L .A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ■ ΜΕ ΑΣΦ AS = ? J/K Submit Request Answer Part B Is the process reversible or irreversible?arrow_forward
- A-E pleasearrow_forwardThree moles of an ideal gas undergo a reversible isothermal compression at 20.0° C. During this compression, 1900 J of work is done on the gas. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Entropy change in a free expansion. Part A What is the change of entropy of the gas? ΤΕ ΑΣΦ AS = Submit Request Answer J/Karrow_forward5.97 Block A, with weight 3w, slides down an inclined plane S of slope angle 36.9° at a constant speed while plank B, with weight w, rests on top of A. The plank is attached by a cord to the wall (Fig. P5.97). (a) Draw a diagram of all the forces acting on block A. (b) If the coefficient of kinetic friction is the same between A and B and between S and A, determine its value. Figure P5.97 B A S 36.9°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY