Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 56PQ
(a)
To determine
The effect of increasing the frequency on the pendulum.
(b)
To determine
Whether A’s calculation about the frequency is correct.
(c)
To determine
Whether C’s statement that no real pendulum can be modelled as a simple pendulum correct and if so find the correct frequency.
(d)
To determine
Whether the motor is defective.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You were just hired to work as a lab tech in the physics lab of your university. Your first task was to set up a simple pendulum that makes 30.0 complete swings in 75.0 s. What should be the length of this pendulum?
After landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 53.0 cm . The explorer finds that the pendulum completes 90.0 full swing cycles in a time of 126 s
What is the magnitude of the gravitational acceleration on this planet?
After landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 50.0 cm. She finds that the pendulum makes 100 complete swings in 136 s. What is the value of g on this planet?
Chapter 16 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 16.1 - Prob. 16.1CECh. 16.2 - Prob. 16.2CECh. 16.2 - For each expression, identify the angular...Ch. 16.5 - Prob. 16.4CECh. 16.6 - Prob. 16.5CECh. 16.6 - Prob. 16.6CECh. 16 - Case Study For each velocity listed, state the...Ch. 16 - Case Study For each acceleration listed, state the...Ch. 16 - Prob. 3PQCh. 16 - Prob. 4PQ
Ch. 16 - Prob. 5PQCh. 16 - Prob. 6PQCh. 16 - The equation of motion of a simple harmonic...Ch. 16 - The expression x = 8.50 cos (2.40 t + /2)...Ch. 16 - A simple harmonic oscillator has amplitude A and...Ch. 16 - Prob. 10PQCh. 16 - A 1.50-kg mass is attached to a spring with spring...Ch. 16 - Prob. 12PQCh. 16 - Prob. 13PQCh. 16 - When the Earth passes a planet such as Mars, the...Ch. 16 - A point on the edge of a childs pinwheel is in...Ch. 16 - Prob. 16PQCh. 16 - Prob. 17PQCh. 16 - A jack-in-the-box undergoes simple harmonic motion...Ch. 16 - C, N A uniform plank of length L and mass M is...Ch. 16 - Prob. 20PQCh. 16 - A block of mass m = 5.94 kg is attached to a...Ch. 16 - A block of mass m rests on a frictionless,...Ch. 16 - It is important for astronauts in space to monitor...Ch. 16 - Prob. 24PQCh. 16 - A spring of mass ms and spring constant k is...Ch. 16 - In an undergraduate physics lab, a simple pendulum...Ch. 16 - A simple pendulum of length L hangs from the...Ch. 16 - We do not need the analogy in Equation 16.30 to...Ch. 16 - Prob. 29PQCh. 16 - Prob. 30PQCh. 16 - Prob. 31PQCh. 16 - Prob. 32PQCh. 16 - Prob. 33PQCh. 16 - Show that angular frequency of a physical pendulum...Ch. 16 - A uniform annular ring of mass m and inner and...Ch. 16 - A child works on a project in art class and uses...Ch. 16 - Prob. 37PQCh. 16 - Prob. 38PQCh. 16 - In the short story The Pit and the Pendulum by...Ch. 16 - Prob. 40PQCh. 16 - A restaurant manager has decorated his retro diner...Ch. 16 - Prob. 42PQCh. 16 - A wooden block (m = 0.600 kg) is connected to a...Ch. 16 - Prob. 44PQCh. 16 - Prob. 45PQCh. 16 - Prob. 46PQCh. 16 - Prob. 47PQCh. 16 - Prob. 48PQCh. 16 - A car of mass 2.00 103 kg is lowered by 1.50 cm...Ch. 16 - Prob. 50PQCh. 16 - Prob. 51PQCh. 16 - Prob. 52PQCh. 16 - Prob. 53PQCh. 16 - Prob. 54PQCh. 16 - Prob. 55PQCh. 16 - Prob. 56PQCh. 16 - Prob. 57PQCh. 16 - An ideal simple harmonic oscillator comprises a...Ch. 16 - Table P16.59 gives the position of a block...Ch. 16 - Use the position data for the block given in Table...Ch. 16 - Consider the position data for the block given in...Ch. 16 - Prob. 62PQCh. 16 - Prob. 63PQCh. 16 - Use the data in Table P16.59 for a block of mass m...Ch. 16 - Consider the data for a block of mass m = 0.250 kg...Ch. 16 - A mass on a spring undergoing simple harmonic...Ch. 16 - A particle initially located at the origin...Ch. 16 - Consider the system shown in Figure P16.68 as...Ch. 16 - Prob. 69PQCh. 16 - Prob. 70PQCh. 16 - Prob. 71PQCh. 16 - Prob. 72PQCh. 16 - Determine the period of oscillation of a simple...Ch. 16 - The total energy of a simple harmonic oscillator...Ch. 16 - A spherical bob of mass m and radius R is...Ch. 16 - Prob. 76PQCh. 16 - A lightweight spring with spring constant k = 225...Ch. 16 - Determine the angular frequency of oscillation of...Ch. 16 - Prob. 79PQCh. 16 - A Two springs, with spring constants k1 and k2,...Ch. 16 - Prob. 81PQCh. 16 - Prob. 82PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of the pendulum oscillation steady at 0.03 rad. What is the Q of the system?arrow_forwardFor each expression, identify the angular frequency , period T, initial phase and amplitude ymax of the oscillation. All values are in SI units. a. y(t) = 0.75 cos (14.5t) b. vy (t) = 0.75 sin (14.5t + /2) c. ay (t) = 14.5 cos (0.75t + /2) 16.3arrow_forwardA 50.0-g object connected to a spring with a force constant of 35.0 N/m oscillates with an amplitude of 4.00 cm on a frictionless, horizontal surface. Find (a) the total energy of the system and (b) the speed of the object when its position is 1.00 cm. Find (c) the kinetic energy and (d) the potential energy when its position is 3.00 cm.arrow_forward
- After landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 55.0 cm. She finds that the pendulum makes 110 complete swings in a time of 125 s. What is the value of g on this planet?arrow_forwardAfter landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 55.0 cmcm. She finds that the pendulum makes 110 complete swings in a time of 145 ss. What is the value of gg on this planet? Express your answer with the appropriate units.arrow_forwardA 236 g ball is tied to a string. It is pulled to an O angle of 7.8 and released to swing as a pendulum. A student with a stopwatch finds that 13 oscillations take 18 s. You may want to review (Pages 405 - 407). How long is the string? Express your answer to two significant figures and include the appropriate units. L = μÅ Value Ć Units ?arrow_forward
- A 200 g ball is tied to a string. It is pulled out to an angle of 8.0◦ and released to swing as a pendulum. A student with a stopwatch finds that 10 oscillations take 12.0s. How long is the string?arrow_forwardAs shown in the figure, a homogeneous rod with a length L = I (m) and ma ss m= 0.5 (kg) is fixed so that it can rotate in the middle. Two springs with constant k= 12 (N/m) are connected at both ends of the rod. The other ends of the springs are fixed and the springs are unstretched. The rod is rotated as 0 « from its equilibrium position and released. What is the angular frequency of the rod in (rad/s)? g = 10 (m/s²) %3D m, Larrow_forwardA pendulum that consists of two uniform rings, the first ring has Radius R = 12 cm and mass 2.5kg, and the second ring has radius r= 7cm and mass 1.6kg. Both rings are attached to a rod of mass 0.15kg. The pendulum swings freely about frictionless pivot o. If the pendulum is to have a period of 2.2 a for small oscillations, what must be the rod length L?arrow_forward
- A vertical spring with constant k = 5 N/m and damping constant β = 6 kg/s has one end fixed to a wall, and a mass of 98 kg at the other end. Being in the position of equilibrium, the mass is propelled downward with a speed of 4 m/s. Suppose that on the system an external force acts in newtons given by f(t) = 8e^ −t What is the diferential equation and conditions that allow to find the position of the spring as function of a time t, with t in secondsarrow_forwardA captive James Bond is strapped to a table beneath a huge pendulum made of a 2.0-m-diameter uniform circular metal blade rigidly attached, at its top edge, to a 7.5-m-long, massless rod. The pendulum is set swinging with a 10° amplitude when its lower edge is 4.0 m above the prisoner, then the table slowly starts ascending at 1.0 mm/s. After 25 minutes, the pendulum's amplitude has decreased to 7.0°. Fortunately, the prisoner is freed with a mere 30 s to spare. Part A What was the speed of the lower edge of the blade as it passed over him for the last time? Express your answer with the appropriate units. OM μÀ 4 A ? Value Units Submit Request Answerarrow_forwardYour answer is partially correct. A point on the surface of a solid sphere (radius= 0.954 m) is attached directly to a pivot on the ceiling. The sphere swings back and forth as a physical pendulum with a small amplitude. What is the length of a simple pendulum that has the same period as this physical pendulum? Number i 381.6 Units marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY