Concept explainers
Two loudspeakers located along the x-axis as shown in Figure P16.61 produce sounds of equal frequency. Speaker 1 is at the origin, while the location of speaker 2 can be varied by a remote control wielded by the listener. He notices maxima in the sound intensity when speaker 2 is located at x = 0.75 m and 1.00 m, but at no points in between. What is the frequency of the sound? Assume the speed of sound is 340 m/s.
Figure P16.61
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
College Physics: A Strategic Approach (3rd Edition)
Additional Science Textbook Solutions
Chemistry: Structure and Properties (2nd Edition)
Human Physiology: An Integrated Approach (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Applications and Investigations in Earth Science (9th Edition)
Campbell Biology (11th Edition)
- As you travel down the highway in your car, an ambulance approaches you from the rear at a high speed (Fig. OQ13.15) sounding its siren at a frequency of 500 Hz. Which statement is correct? (a) You hear a frequency less than 500 Hz. (b) You hear a frequency equal to 500 Hz. (c) You hear a frequency greater than 500 Hz. (d) You hear a frequency greater than 500 Hz, whereas the ambulance driver hears a frequency lower than 500 Hz. (e) You hear a frequency less than 500 Hz, whereas the ambulance driver hears a frequency of 500 Hz. Figure OQ13.15arrow_forwardA sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardWhy is the following situation impossible? A student is listening to the sounds from an air column that is 0.730 m long. He doesnt know if the column is open at both ends or open at only one end. He hears resonance from the air column at frequencies 235 Hz and 587 Hz.arrow_forward
- Some studies suggest that the upper frequency limit of hearing is determined by the diameter of the eardrum. The wavelength of the sound wave and the diameter of the eardrum are approximately equal at this upper limit. If the relationship holds exactly, what is the diameter of the eardrum of a person capable of hearing 20 000 Hz? (Assume a body temperature of 37.0C.)arrow_forwardA barrel organ is shown in Figure P18.38. Such organs are much smaller than traditional organs, allowing them to fit in smaller spaces and even allowing them to be portable. Use the photo to estimate the range in fundamental frequencies produced by the organ pipes in such an instrument. Assume the pipes are open at both ends. How does that range compare to a piano whose strings range in fundamental frequency from 21.7 Hz to 4186.0 Hz? FIGURE P18.38arrow_forwardIn figure OQ18.1 (page 566), a sound wave of wave-lenght 0.8 m divides into two equal parts that recombine to interfere constructively, with the original difference between their path lengths being |r2 r1| = 0.8 m. Rank the following situations according to the intensity of sound at the receiver from the highest to the lowest. Assume the tube walls absorb no sound energy. Give equal ranks to situations in which the intensity is equal. (a) From its original position, the sliding section is moved out by 0.1 m. (b) Next it slides out an additional 0.1 m. (c) It slides out still another 0.1 m. (d) It slides out 0.1 m more.arrow_forward
- In Figure OQ14.3, a sound wave of wavelength 0.8 m divides into two equal parts that recombine to interfere constructively, with the original difference between their path lengths being |r2 − r1| = 0.8 m. Rank the following situations according to the intensity of sound at the receiver from the highest to the lowest. Assume the tube walls absorb no sound energy. Give equal ranks to situations in which the intensity is equal. (a) From its original position, the sliding section is moved out by 0.1 m. (b) Next it slides out an additional 0.1 m. (c) It slides out still another 0.1 m. (d) It slides out 0.1 m more. Figure OQ14.3arrow_forwardA tuning fork is known to vibrate with frequency 262 Hz. When it is sounded along with a mandolin siring, four beats are heard every second. Next, a bit of tape is put onto each line of the tuning fork, and the tuning fork now produces five beats per second with the same mandolin siring. What is the frequency of the string? (a) 257 Hz (b) 258 Hz (c) 262 Hz (d) 266 Hz (e) 267 Hzarrow_forward(a) What is the speed of sound in a medium where a 100-kHz frequency produces a 5.96-cm wavelength? (b) Which substance in Table 17.1 is this likely to be?arrow_forward
- Review. A 150-g glider moves at v1 = 2.30 m/s on an air track toward an originally stationary 200-g glider as shown in Figure P16.53. The gliders undergo a completely inelastic collision and latch together over a time interval of 7.00 ms. A student suggests roughly half the decrease in mechanical energy of the two-glider system is transferred to the environment by sound. Is this suggestion reasonable? To evaluate the idea, find the implied sound level at a position 0.800 m from the gliders. If the students idea is unreasonable, suggest a better idea. Figure P16 53arrow_forwardAs you travel down the highway in your car, an ambulance approaches you from the rear at a high speed (Fig. OQ17.3) sounding its siren at a frequency of 500 Hz. Which statement is correct? (a) You hear a frequency less than 500 Hz. (b) You hear a frequency equal to 500 Hz. (c) You hear a frequency greater than 500 Hz. (d) You hear a frequency greater than 500 Hz. whereas the ambulance driver hears a frequency lower than 500 Hz. (e) You hear a frequency less than 500 Hz. whereas (he ambulance driver hears a frequency of 500 Hz.arrow_forwardThe bulk modulus of water is 2.2 109 Pa (Table 15.2). The density of water is 103 kg/m3 (Table 15.1). Find the speed of sound in water and compare your answer with the value given in Table 17.1.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University