College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 53GP
Spiders may “tune” strands of their webs to give enhanced response at frequencies corresponding to the frequencies at which desirable prey might struggle. Orb web silk has a typical diameter of 0.0020 mm, and spider silk has a density of 1300 kg/m3. To give a resonance at 100 Hz, to what tension must a spider adjust a 12-cm-long strand of silk?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Biologists think some spiders “tune” strands of their web to give enhanced response at frequencies corresponding to those at which prey might struggle. Orb spider silk has a typical diameter of 20 µm, and spider silk has a density of 1300 kg/m3. To have a fundamental frequency at 100 Hz, to what tension must a spider adjust a 12 cm long strand of silk?
A ski gondola is connected to the top of a hill by a steel cable of length 720 m and diameter 1.3 cm. As the gondola comes to the end of its run, it bumps into the terminal and sends a wave pulse along the cable. It is observed that it took 14 s for the pulse to return. What is the speed of the pulse? What is the tension in the cable?
One end of a horizontal rope is attached to a prong of an electrically driven tuning fork that vibrates
the rope transversely at 274 Hz. The other end passes over a pulley and supports a 2 kg mass. The
linear density of the rope is 0.004 kg/m. What is the length in centimeters if it vibrates at its 2nd
overtone?
ROUND OFF ANSWER TO THE NEAREST WHOLE NUMBER.
Chapter 16 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 16 - Light can pass easily through water and through...Ch. 16 - Ocean waves are partially reflected from the...Ch. 16 - A string has an abrupt change in linear density at...Ch. 16 - A guitarist finds that the pitch of one of her...Ch. 16 - Certain illnesses inflame your vocal cords,...Ch. 16 - Figure Q16.6 shows a standing wave on a string...Ch. 16 - Figure Q16.7 shows a standing sound wave in a tube...Ch. 16 - A typical flute is about 66 cm long. A piccolo is...Ch. 16 - Some pipes on a pipe organ are open at both ends,...Ch. 16 - A friends voice sounds different over the...
Ch. 16 - Suppose you were to play a trumpet after breathing...Ch. 16 - If you pour liquid in a tall, narrow glass, you...Ch. 16 - When you speak after breathing helium, in which...Ch. 16 - Sopranos can sing notes at very high...Ch. 16 - A synthesizer is a keyboard instrument that can be...Ch. 16 - If a cold gives you a stuffed-up nose, it changes...Ch. 16 - A small boy and a grown woman both speak at...Ch. 16 - At x = 3 cm, what is the earliest time that y will...Ch. 16 - Two sinusoidal waves with the same amplitude A and...Ch. 16 - A student in her physics lab measures the...Ch. 16 - Prob. 23MCQCh. 16 - Resonances of the ear canal lead to increased...Ch. 16 - The frequency of the lowest standing-wave mode on...Ch. 16 - Suppose you pluck a string on a guitar and it...Ch. 16 - Figure P16.11 is a snapshot graph at t = 0 s of...Ch. 16 - Figure P16.2 is a snapshot graph at t = 0 s of two...Ch. 16 - Figure P16.3a is a snapshot graph at t = 0 s of...Ch. 16 - Figure P16.4 is a snapshot graph at t = 0 s of two...Ch. 16 - Figure P16.4 is a snapshot graph at t = 0 s of two...Ch. 16 - Figure P16.6 is a snapshot graph at t = 0 s of a...Ch. 16 - At t = 0 s, a small upward (positive y) pulse...Ch. 16 - You are holding one end of an elastic cord that is...Ch. 16 - A 2.0-m-long string is fixed at both ends and...Ch. 16 - Figure P16.10 shows a standing wave oscillating at...Ch. 16 - A bass guitar string is 89 cm long with a...Ch. 16 - Prob. 12PCh. 16 - a. What are the three longest wavelengths for...Ch. 16 - A 121-cm-long, 4.00 g string oscillates in its m =...Ch. 16 - Prob. 15PCh. 16 - A violin string has a standard length of 32.8 cm....Ch. 16 - The lowest note on a grand piano has a frequency...Ch. 16 - An experimenter finds that standing waves on a...Ch. 16 - Ocean waves of wavelength 26 m are moving directly...Ch. 16 - Prob. 20PCh. 16 - The contrabassoon is the wind instrument capable...Ch. 16 - Figure P16.22 shows a standing sound wave in an...Ch. 16 - Prob. 23PCh. 16 - An organ pipe is made to play a low note at 27.5...Ch. 16 - The speed of sound in room temperature (20C) air...Ch. 16 - Parasaurolophus was a dinosaur whose...Ch. 16 - A drainage pipe running under a freeway is 30.0 m...Ch. 16 - Some pipe organs create sounds lower than humans...Ch. 16 - Although the vocal tract is quite complicated, we...Ch. 16 - You know that you sound better when you sing in...Ch. 16 - A child has an ear canal that is 1.3 cm long. At...Ch. 16 - When a sound wave travels directly toward a hard...Ch. 16 - The first formant of your vocal system can be...Ch. 16 - When you voice the vowel sound in hat, you narrow...Ch. 16 - The first and second formants when you make an ee...Ch. 16 - Two loudspeakers in a 20C room emit 686 Hz sound...Ch. 16 - Two loudspeakers emit sound waves along the...Ch. 16 - In noisy factory environments, its possible to use...Ch. 16 - Two identical loudspeakers separated by distance d...Ch. 16 - Two identical loudspeakers 2.0 m apart are...Ch. 16 - Prob. 42PCh. 16 - Musicians can use beats to tune their instruments....Ch. 16 - A student waiting at a stoplight notices that her...Ch. 16 - Two strings are adjusted to vibrate at exactly 200...Ch. 16 - A childs train whistle replicates a classic...Ch. 16 - A flute player hears four beats per second when...Ch. 16 - Prob. 48GPCh. 16 - In addition to producing images, ultrasound can be...Ch. 16 - An 80-cm-long steel string with a linear density...Ch. 16 - Tendons are, essentially, elastic cords stretched...Ch. 16 - A string, stretched between two fixed posts, forms...Ch. 16 - Spiders may tune strands of their webs to give...Ch. 16 - Prob. 54GPCh. 16 - Prob. 55GPCh. 16 - Lake Erie is prone to remarkable seichesstanding...Ch. 16 - Prob. 57GPCh. 16 - Prob. 58GPCh. 16 - A 40-cm-long tube has a 40-cm-long insert that can...Ch. 16 - The width of a particular microwave oven is...Ch. 16 - Two loudspeakers located along the x-axis as shown...Ch. 16 - Two loudspeakers 42.0 m apart and facing each...Ch. 16 - You are standing 2.50 m directly in front of one...Ch. 16 - Two loudspeakers, 4.0 m apart and facing each...Ch. 16 - Piano tuners tune pianos by listening to the beats...Ch. 16 - A flutist assembles her flute in a room where the...Ch. 16 - A Doppler blood flowmeter emits ultrasound at a...Ch. 16 - An ultrasound unit is being used to measure a...Ch. 16 - Prob. 70MSPPCh. 16 - Prob. 71MSPPCh. 16 - Prob. 72MSPPCh. 16 - Prob. 73MSPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
In the following diagram, the white spheres represent hydrogen atoms and the blue Sphere represent the nitrogen...
Chemistry: The Central Science (14th Edition)
60. You are 9.0 m from the door of your bus, behind the bus, when it pulls away with an acceleration of 1.0 m/...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
How Would the experiments result charge if oxygen (O2) were induced in the spark chamber?
Biology: Life on Earth with Physiology (11th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
In Figure 12.14, why do the nuclei resulting from experiment 2 contain different amounts of DNA?
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Review. A tuning fork vibrating at 512 Hz falls from rest and accelerates at 9.80 m/s2. How far below the point of release is the tuning fork when waves of frequency 485 Hz reach the release point?arrow_forwardAs shown in Figure P14.37, water is pumped into a tall, vertical cylinder at a volume flow rate R. The radius of the cylinder is r, and at the open top of the cylinder a tuning fork is vibrating with a frequency f. As the water rises, what time interval elapses between successive resonances? Figure P14.37 Problems 37 and 38.arrow_forwardStanding-wave vibrations are set up in a crystal goblet with four nodes and four antinodes equally spaced around the 15.0-cm circumference of its rim. If transverse waves move around the glass at 860 m/s, an opera singer would have to produce a high harmonic with what frequency in order to shatter the glass with a resonant vibration? ?kHzarrow_forward
- A musician uses a tuning fork of frequency f = 243 Hz to tune his guitar and his trumpet. There is a beat frequency between the tuning fork and the guitar string and between the tuning fork and the trumpet for this note of fbeat = 5 Hz. If the original tension T is 100 N, what must be the new tension T ' in Newtons? The musician increases the length of an air column in the trumpet and notices that the beat frequency increases. Choose the correct answer from the options below. Find the original frequency of this note fT in Hz from the trumpet.arrow_forwardA piano tuner stretches a steel piano wire with a tension of 879 N. The wire is 0.400 mm long and has a mass of 3.30 g. What is the frequency of its fundamental mode of vibration? What is the number of the highest harmonic that could be heard by a person who is capable of hearing frequencies up to 10000 Hz?arrow_forwardStanding - wave vibrations are set up in a crystal goblet with four nodes and four antinodes equally spaced around the 20.0-cm circumference of its rim. If transverse waves move around the glass at 900. m/s, an opera singer would have to produce a high harmonic with what frequency in order to shatter the glass with a resonant vibration?arrow_forward
- A granite rod of 60 cm length is clamped at its middle point and is set into longitudinal vibrations. The density of granite is 2.7 x 10° kg/m and its Young's modulus is 9.27 × 101° Pa. What will be the fundamental frequency of the longitudinal vibrations ?arrow_forwardThe windpipe of a typical whooping crane is about 5.0 ft. long. What is the lowest resonant frequency of this pipe, assuming it is closed at one end? Assume a temperature of 37°C.arrow_forwardA string attached to an oscillator at one end forms 5 nodes (counting the two ends) and produces a frequency of ν = 4.5 kHz. The string is L = 1.05 m long and is under a tension of T = 185 N. a. What is the linear density of the string, in kilograms per meter?arrow_forward
- One technique of estimating the length of a metal is by recording the time it takes for a pulse to travel from one end to the other. The student finds that the time is 3.56 × 10–3 s. The Young’s modulus of copper is 1.1 × 1011 N/m2; and its density is 8890 kg/m3. How long is the rod?arrow_forwardQuestion in pic.arrow_forwardA string of 2.74 g and 82 cm in length is attached at one of its ends to one of the arms of a tuning fork with a frequency of 326 Hz that generates electrically operated waves with an energy per unit of time of 24 W. The other end passes through a pulley and supports a mass of 136.5 kg. Use 9.8 m/s2 as the value for the acceleration of gravity. The maximum acceleration of the particles on the string isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY