Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 49P
To determine
To find:
a) Wave speed
b) Wavelength of the standing wave
c) Frequency of the travelling waves whose superposition gives the standing wave.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A transverse wave traveling along an x axis has the fornm
given by
(16-18)
y =y," sin(kx ± ω1 + φ).
Figure 16-8a gives the displacement of string elements as a
function of , al at time0. Figure 16-8h gives the
displacements of the element at x 0 as a function oft. Find
the values of the quantities shown in Eq. 16-18, including the
correct choice of sign.
(min)
10
20
-10
-20
-9
*レ
b)
P 18-28
page-559
Refer to the figure below where the attached mass m hangs from a cord around a pulley, with m= 5.00 kg.
The length of the cord between point P and the pulley is L = 2.00 m. The vibrator is set to a frequency of
150 Hz and a standing wave of six loops is formed, as shown in the figure above.
(a) Determine the linear mass density of the string.
(b) How many loops (if any) will result if the mass m is changed to 45 kg?
(c) How many loops (if any) will result if the mass m is changed to 10 kg?
A string can have a "free" end if that end is attached to a
ring that can slide without friction on a vertical pole
(Fig. 15-40). Determine the wavelengths of the resonant
vibrations of such a string with one end fixed and the
other free.
o dignelovew lloh
bi bhs eoh
Free
end
Fixed
end
16
FIGURE 15-40
Problem 85.
l-
Chapter 16 Solutions
Fundamentals of Physics Extended
Ch. 16 - Prob. 1QCh. 16 - Prob. 2QCh. 16 - Prob. 3QCh. 16 - Prob. 4QCh. 16 - Prob. 5QCh. 16 - The amplitudes and phase differences for four...Ch. 16 - Prob. 7QCh. 16 - a If a standing wave on a siring is given by y't =...Ch. 16 - Prob. 9QCh. 16 - If you set up the seventh harmonic on a string, a...
Ch. 16 - Prob. 11QCh. 16 - If a wave yx, t = 6.0mm sinkx 600 rad/st ...Ch. 16 - Prob. 2PCh. 16 - A wave has an angular frequency of 110 rad/s and a...Ch. 16 - Prob. 4PCh. 16 - A sinusoidal wave travels along a string. The time...Ch. 16 - Prob. 6PCh. 16 - A transverse sinusoidal wave is moving along a...Ch. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - The equation of a transverse wave traveling along...Ch. 16 - Prob. 11PCh. 16 - GO The function yx, t = 15.0 cm cosx 15 t, with x...Ch. 16 - Prob. 13PCh. 16 - The equation of a transverse wave on a string is y...Ch. 16 - Prob. 15PCh. 16 - The speed of a transverse wave on a string is 170...Ch. 16 - The linear density of a string is 1.6 104 kg/m. A...Ch. 16 - Prob. 18PCh. 16 - SSM What is the speed of a transverse wave in a...Ch. 16 - The tension in a wire clamped at both ends is...Ch. 16 - ILW A 100 g wire is held under a tension of 250 N...Ch. 16 - A sinusoidal wave is traveling on a string with...Ch. 16 - SSM ILW A sinusoidal transverse wave is traveling...Ch. 16 - Prob. 24PCh. 16 - A uniform rope of mass m and length L hangs from a...Ch. 16 - A string along which waves can travel is 2.70 m...Ch. 16 - Prob. 27PCh. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Prob. 31PCh. 16 - What phase difference between two identical...Ch. 16 - Prob. 33PCh. 16 - Prob. 34PCh. 16 - SSM Two sinusoidal waves of the same frequency...Ch. 16 - Four waves are to be sent along the same string,...Ch. 16 - GO These two waves travel along the same string:...Ch. 16 - Two sinusoidal waves of the same frequency are to...Ch. 16 - Two sinusoidal waves of the same period, with...Ch. 16 - Two sinusoidal waves with identical wavelengths...Ch. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - SSM WWW What are a the lowest frequency, b the...Ch. 16 - A 125 cm length of string has mass 2.00 g and...Ch. 16 - Prob. 45PCh. 16 - String A is stretched between two clamps separated...Ch. 16 - Prob. 47PCh. 16 - If a transmission line in a cold climate collects...Ch. 16 - Prob. 49PCh. 16 - Prob. 50PCh. 16 - Prob. 51PCh. 16 - A rope, under a tension of 200 N and fixed at both...Ch. 16 - Prob. 53PCh. 16 - Prob. 54PCh. 16 - GO The following two waves are sent in opposite...Ch. 16 - A standing wave pattern on a string is described...Ch. 16 - A generator at one end of a very long string...Ch. 16 - GO In Fig. 16-42, a string, tied to a sinusoidal...Ch. 16 - GO In Fig. 16-43, an aluminum wire, of length L1 =...Ch. 16 - Prob. 60PCh. 16 - Prob. 61PCh. 16 - Prob. 62PCh. 16 - A wave has a speed of 240 m/s and a wavelength of...Ch. 16 - The equation of a transverse wave traveling alone...Ch. 16 - The equation of a transverse wave traveling along...Ch. 16 - Prob. 66PCh. 16 - Prob. 67PCh. 16 - Prob. 68PCh. 16 - Prob. 69PCh. 16 - Prob. 70PCh. 16 - A transverse sinusoidal wave is generated at one...Ch. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - a What is the fastest transverse wave that can be...Ch. 16 - A standing wave results from the sum of two...Ch. 16 - Prob. 77PCh. 16 - Prob. 78PCh. 16 - Prob. 79PCh. 16 - When played in a certain manner, the lowest...Ch. 16 - A sinusoidal transverse wave traveling in the...Ch. 16 - Two sinusoidal waves of the same wavelength travel...Ch. 16 - Prob. 83PCh. 16 - Prob. 84PCh. 16 - Prob. 85PCh. 16 - a Write an equation describing a sinusoidal...Ch. 16 - A wave on a string is described by yx, t = 15.0...Ch. 16 - Prob. 88PCh. 16 - Two waves are described by...Ch. 16 - Prob. 90PCh. 16 - SSM In a demonstration, a 1.2 kg horizontal rope...Ch. 16 - Prob. 92PCh. 16 - A traveling wave on a string is described by...Ch. 16 - Prob. 94PCh. 16 - Prob. 95PCh. 16 - Consider a loop in the standing wave created by...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 7.00 cm, a wave number of k=3.00 m-1, an angular frequency of =2.50 s-1, and a period of 6.00 s, but one has a phase shift of an angle =12 rad. What is the height of the resultant wave at a time t=2.00 s and a position x=0.53 m?arrow_forward.9 A sinusoidal wave mov- ing along a string is shown twice in Fig. 16-33, as crest A travels in the positive direc- tion of an x axis by distance Н d = 6.0 cm in 4.0 ms. The tick marks along the axis are separated by 10 cm; height H = 6.00 mm. The equation for the wave is in the form Figure 16-33 Problem 9. y(x, 1) = ym sin(kx + wt), so what are (a) ym, (b) k, (c) w, and (d) the correct choice of sign in front of w?arrow_forwardConsider a wave on a string moving to the right, as shown in Fig. 11-50. What is the direction of the velocity of a particle of string at point B? Wave velocity (a) A B (b) (c) ▼ FIGURE 11-50 (d). MisConceptual Question 12. (e) v = 0, so no direction.arrow_forward
- 68 A single pulse, given by h(x - 5.01), is shown in Fig. 16-45 for t = 0. The scale of the vertical axis is set by h, = 2. Here x is in centimeters and t is in seconds. What are the (a) speed and (b) di- rection of travel of the pulse? (c) Plot h(x – 5t) as a function of x for 1 = 2 s. (d) Plot h(xr – 5t) as a func- tion of t for x = 10 cm. %3D %3! t= 0 Figure 16-45 Problem 68.arrow_forwardWhen a sinusoidal wave crosses the boundary between two sections of cord as in Fig. 11–34, the frequency does not change (although the wavelength and velocity do change). Explain whyarrow_forwardReference: Problem 11-93. A bat emits an ultrasound burst (frequency = f) as it flies toward a cave wall at speed v. At what frequency does the bat perceive the reflected pulse? Assume air at 20 °C. f = 50.6 kHz; v = 7.7 m/s]arrow_forward
- 27P. A sinusoidal transverse wave is traveling along a string toward decreasing x. Figure 17-29 shows a plot of the displace- ment as a function of position at time t= 3.6 N, and its linear density is 25 g/m. Find (a) the amplitude, (b) 0. The string tension is the wavelength, (c) the wave speed, and (d) the period of the wave. (e) Find the maximum speed of a particle in the string. (f) Write an equation describing the traveling wave. 6. 4 2. -2 -4 -6 10 20 30 40 50 60 70 80 x (cm) FIGURE 17-29 Problem 27.arrow_forward93. ssm Suppose that the linear density of the A string on a violin is 7.8 x 10-4 kg/m. A wave on the string has a frequency of 440 Hz and a wavelength of 65 cm. What is the tension in the string?arrow_forward2 In Fig. 16-24, wave 1 consists of a rectangular peak of height 4 units and width d, and a rectangular valley of depth 2 units and width d. The wave travels rightward along an x axis Choices 2, 3, and 4 are similar waves, with the same heights, depths, and widths, that will travel leftward along that axis and through wave 1. Right-going wave 1 and one of the left-going waves will interfere as they pass through each other. With which left-going wave will the interference give, for an instant, (a) the deepest valley, (b) a flat line, and (c) a flat peak 2d wide? (1) (2) (3) (4)arrow_forward
- When a plane wave travels in a medium, the displace- ments of particles are given by y = 0.01 sin [27n (2t – 0.01x)] where x and y are in metre and t in second. Find (a) the amplitude, wavelength, wave velocity and frequency of the wave, (b) the phase difference between two positions of the same particle in a time interval of 0.25s and (c) the phase difference at a given instant of time between two particles 50 m apart.arrow_forwardA string can have a “free" end if that end is attached to a ring that can slide without friction on a vertical pole (Fig. 11-60). Determine the wavelengths of the resonant vibrations of such a string with one end fixed and the other free. Free end Fixed end FIGURE 11-60 Problem 82.arrow_forwardA string with a total length of 2.5m and a mass of 0.0250 kg is connected to two poles. The tension in the cable is 75Nand it is set vibrating with a frequency of 25Hz. (i). What is the linear mass density? (ii). What is the speed of waves on the string? (iii). Calculate the wavelength of the resulting wave in the cable?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning