Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 27P
To determine
To find:
the amplitude of the wave.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A transverse wave traveling along an x axis has the fornm
given by
(16-18)
y =y," sin(kx ± ω1 + φ).
Figure 16-8a gives the displacement of string elements as a
function of , al at time0. Figure 16-8h gives the
displacements of the element at x 0 as a function oft. Find
the values of the quantities shown in Eq. 16-18, including the
correct choice of sign.
(min)
10
20
-10
-20
-9
*レ
b)
66 Figure 16-44 shows the dis-
placement y versus time t of the
point on a string at x= 0, as a
wave passes through that point.
The scale of the y axis is set by
y, = 6.0 mm. The wave is given
by y(x, t) = ym sin(kx – wt + 4).
What is 4? (Caution: A calculator
does not always give the proper
inverse trig function, so check your answer by substituting it and an
assumed value of w into y(x, 1) and then plotting the function.)
y (mm)
Figure 16-44 Problem 66.
*27 O A sinusoidal wave is sent along a string with a linear
density of 2.0 g/m. As it travels, the kinetic energies of
the mass elements along the string vary. Figure 16-37a gives the
rate dKldt at which kinetic energy passes through the string ele-
ments at a particular instant, plotted as a function of distance x
along the string. Figure 16-37b is similar except that it gives the
rate at which kinetic energy passes through a particular mass ele-
ment (at a particular location), plotted as a function of time t. For
both figures, the scale on the vertical (rate) axis is set by R, = 10 W.
What is the amplitude of the wave?
R,
0.1
0.2
x (m)
t (ms)
(a)
(b)
Chapter 16 Solutions
Fundamentals of Physics Extended
Ch. 16 - Prob. 1QCh. 16 - Prob. 2QCh. 16 - Prob. 3QCh. 16 - Prob. 4QCh. 16 - Prob. 5QCh. 16 - The amplitudes and phase differences for four...Ch. 16 - Prob. 7QCh. 16 - a If a standing wave on a siring is given by y't =...Ch. 16 - Prob. 9QCh. 16 - If you set up the seventh harmonic on a string, a...
Ch. 16 - Prob. 11QCh. 16 - If a wave yx, t = 6.0mm sinkx 600 rad/st ...Ch. 16 - Prob. 2PCh. 16 - A wave has an angular frequency of 110 rad/s and a...Ch. 16 - Prob. 4PCh. 16 - A sinusoidal wave travels along a string. The time...Ch. 16 - Prob. 6PCh. 16 - A transverse sinusoidal wave is moving along a...Ch. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - The equation of a transverse wave traveling along...Ch. 16 - Prob. 11PCh. 16 - GO The function yx, t = 15.0 cm cosx 15 t, with x...Ch. 16 - Prob. 13PCh. 16 - The equation of a transverse wave on a string is y...Ch. 16 - Prob. 15PCh. 16 - The speed of a transverse wave on a string is 170...Ch. 16 - The linear density of a string is 1.6 104 kg/m. A...Ch. 16 - Prob. 18PCh. 16 - SSM What is the speed of a transverse wave in a...Ch. 16 - The tension in a wire clamped at both ends is...Ch. 16 - ILW A 100 g wire is held under a tension of 250 N...Ch. 16 - A sinusoidal wave is traveling on a string with...Ch. 16 - SSM ILW A sinusoidal transverse wave is traveling...Ch. 16 - Prob. 24PCh. 16 - A uniform rope of mass m and length L hangs from a...Ch. 16 - A string along which waves can travel is 2.70 m...Ch. 16 - Prob. 27PCh. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Use the wave equation to find the speed of a wave...Ch. 16 - Prob. 31PCh. 16 - What phase difference between two identical...Ch. 16 - Prob. 33PCh. 16 - Prob. 34PCh. 16 - SSM Two sinusoidal waves of the same frequency...Ch. 16 - Four waves are to be sent along the same string,...Ch. 16 - GO These two waves travel along the same string:...Ch. 16 - Two sinusoidal waves of the same frequency are to...Ch. 16 - Two sinusoidal waves of the same period, with...Ch. 16 - Two sinusoidal waves with identical wavelengths...Ch. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - SSM WWW What are a the lowest frequency, b the...Ch. 16 - A 125 cm length of string has mass 2.00 g and...Ch. 16 - Prob. 45PCh. 16 - String A is stretched between two clamps separated...Ch. 16 - Prob. 47PCh. 16 - If a transmission line in a cold climate collects...Ch. 16 - Prob. 49PCh. 16 - Prob. 50PCh. 16 - Prob. 51PCh. 16 - A rope, under a tension of 200 N and fixed at both...Ch. 16 - Prob. 53PCh. 16 - Prob. 54PCh. 16 - GO The following two waves are sent in opposite...Ch. 16 - A standing wave pattern on a string is described...Ch. 16 - A generator at one end of a very long string...Ch. 16 - GO In Fig. 16-42, a string, tied to a sinusoidal...Ch. 16 - GO In Fig. 16-43, an aluminum wire, of length L1 =...Ch. 16 - Prob. 60PCh. 16 - Prob. 61PCh. 16 - Prob. 62PCh. 16 - A wave has a speed of 240 m/s and a wavelength of...Ch. 16 - The equation of a transverse wave traveling alone...Ch. 16 - The equation of a transverse wave traveling along...Ch. 16 - Prob. 66PCh. 16 - Prob. 67PCh. 16 - Prob. 68PCh. 16 - Prob. 69PCh. 16 - Prob. 70PCh. 16 - A transverse sinusoidal wave is generated at one...Ch. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - a What is the fastest transverse wave that can be...Ch. 16 - A standing wave results from the sum of two...Ch. 16 - Prob. 77PCh. 16 - Prob. 78PCh. 16 - Prob. 79PCh. 16 - When played in a certain manner, the lowest...Ch. 16 - A sinusoidal transverse wave traveling in the...Ch. 16 - Two sinusoidal waves of the same wavelength travel...Ch. 16 - Prob. 83PCh. 16 - Prob. 84PCh. 16 - Prob. 85PCh. 16 - a Write an equation describing a sinusoidal...Ch. 16 - A wave on a string is described by yx, t = 15.0...Ch. 16 - Prob. 88PCh. 16 - Two waves are described by...Ch. 16 - Prob. 90PCh. 16 - SSM In a demonstration, a 1.2 kg horizontal rope...Ch. 16 - Prob. 92PCh. 16 - A traveling wave on a string is described by...Ch. 16 - Prob. 94PCh. 16 - Prob. 95PCh. 16 - Consider a loop in the standing wave created by...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 3.00 cm, a wavelength of 5.20 m, and a period of 6.52 s, but one has a phase shift of an angle . What is the phase shift if the resultant wave has an amplitude of 5.00 cm? [Hint: Use the trig identity sinu+sinv=2sin(u+v2)cos(uv2)arrow_forwardTwo sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 7.00 cm, a wave number of k=3.00 m-1, an angular frequency of =2.50 s-1, and a period of 6.00 s, but one has a phase shift of an angle =12 rad. What is the height of the resultant wave at a time t=2.00 s and a position x=0.53 m?arrow_forwardTwo sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 6.00 cm, a wavelength of 4.3 m, and a period of 6.00 s, but one has a phase shift of an angle =0.50 rad. What is the height of the resultant wave at a time t=3.15 s and a position x=0.45 m ?arrow_forward
- 27P. A sinusoidal transverse wave is traveling along a string toward decreasing x. Figure 17-29 shows a plot of the displace- ment as a function of position at time t= 3.6 N, and its linear density is 25 g/m. Find (a) the amplitude, (b) 0. The string tension is the wavelength, (c) the wave speed, and (d) the period of the wave. (e) Find the maximum speed of a particle in the string. (f) Write an equation describing the traveling wave. 6. 4 2. -2 -4 -6 10 20 30 40 50 60 70 80 x (cm) FIGURE 17-29 Problem 27.arrow_forwardP 18-28 page-559 Refer to the figure below where the attached mass m hangs from a cord around a pulley, with m= 5.00 kg. The length of the cord between point P and the pulley is L = 2.00 m. The vibrator is set to a frequency of 150 Hz and a standing wave of six loops is formed, as shown in the figure above. (a) Determine the linear mass density of the string. (b) How many loops (if any) will result if the mass m is changed to 45 kg? (c) How many loops (if any) will result if the mass m is changed to 10 kg?arrow_forwardA traveling wave on a taut string with a tension force T, is given by the wave function: y(x,t) = 0.05sin(2rtx-100rt), where x and y are in meters and t is in %3D seconds. If the linear mass density of the string is given by µ = 0.01 kg/m, then the tension force on the string is,arrow_forward
- Consider a wave on a string moving to the right, as shown in Fig. 11-50. What is the direction of the velocity of a particle of string at point B? Wave velocity (a) A B (b) (c) ▼ FIGURE 11-50 (d). MisConceptual Question 12. (e) v = 0, so no direction.arrow_forwardA string having a length of 1.43 m is fixed at both ends. An n=8 standing wave is produced when the string is subject to an oscillation of 124 Hz. if the linear mass density of the string is 0.061, what must the tension be?arrow_forwardA standing wave pattern is established on a string of fixed length L. If the magnitude of the tension force on the string is multiplied by 4/9 while keeping the same frequency and linear mass density, then, the node-node distance d_NN changes by a factor of: 3/2 1/2 2/3arrow_forward
- A string having a length of 1.61 m is fixed at both ends. An n=6 standing wave is produced when the string is subject to an ocillation of 170 Hz. if the linear mass density of the string is 0.060, what must the tension be?arrow_forward(d)v = 2ghmax A wave traveling on a string has the following wave function, y(x, t) = Asin(kx + wt + p). At time t = 0, the point x 0 has a displacement of y(0,0) = 0, and is moving in the negative y -direction. Which of the following is true about the phase constant and the wave speed direction? (a) o = "/2, and the wave is moving in the negative x-direction. (b)y = "2, and the wave is moving in the positive x-direction. (c) o = n and the wave is moving in the negative x-direction. (d)g = n and the wave is moving in the positive x-direction. 11) %3D %3D %3D %3D Y (90) = Aswyz) =0 or %3D Ao las(4)arrow_forward6 GO A sInusoidal wave travels 0.2 along a string under tension. Figure 16-31 gives the slopes x (m) along the string at time t= 0. The scale of the x axis is set by x, = 0.80 m. What is the amplitude of -0.2 Figure 16-31 Problem 6. the wave?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University